Speaker
Description
"The Thirring Model is a covariant quantum field theory of interacting fermions, sharing many features in common with effective theories of two-dimensional electronic systems with linear dispersion such as graphene.
For a small number of flavors and sufficiently strong interactions the ground state may be disrupted by condensation of particle- hole pairs leading to a quantum critical point. With no small dimensionless parameters in play in this regime the Thirring model is plausibly the simplest theory of fermions requiring a numerical solution.
I will review what is currently known focussing on recent results and challenges from simulations employing Domain Wall Fermions, a formulation drawn from state-of-the-art lattice QCD, to faithfully capture the underlying symmetries at the critical point."