## Problem Session

Geometrical structures in $4 \mathrm{~d} N=2$ class S theories

## 1 Line defects in the $4 \mathrm{~d} S U(2) N=2^{*}$ theory

Consider the $4 \mathrm{~d} S U(2) N=2^{*}$ theory, obtained from the $4 \mathrm{~d} S U(2) N=4$ super YangMills by giving a mass to an adjoint hypermultiplet. The corresponding Riemann surface in its class $S$ construction is a once-punctured torus, while the Seiberg-Witten curve is given by

$$
\lambda^{2}=\left(m^{2} \mathfrak{p}(z \mid \tau)+u\right) d z^{2}
$$

where $\mathfrak{p}(z \mid \tau)$ is the Weierstrass function.


The moduli space of flat $S L(2, \mathbb{C})$ connections on the once-punctured torus with a fixed conjugacy class of monodromy around the puncture is identified with the space of $S L(2, \mathbb{C})$ matrices $A, B, M$, up to simultaneous conjugation, with $A B A^{-1} B^{-1}=M$, where $\operatorname{Tr}(M)=$ $\mu+\mu^{-1}$ is fixed. The algebra of holomorphic functions on such a moduli space is generated by

$$
\begin{equation*}
F_{A}:=\operatorname{Tr} A, F_{B}:=\operatorname{Tr} B, F_{K}:=\operatorname{Tr}(A B) \tag{1.1}
\end{equation*}
$$

Such functions come into physical life when we consider the $4 \mathrm{~d} N=2^{*}$ theory on $\mathbb{R}^{3} \times S^{1}$, where they are the VEVs of line defects (corresponding to the $A$-, $B$ - and $K$-cycles) wrapped around the circle.

- Show that

$$
\begin{equation*}
F_{A}^{2}+F_{B}^{2}+F_{K}^{2}-F_{A} F_{B} F_{K}=\mu+\mu^{-1}+2 \tag{1.2}
\end{equation*}
$$

(Hint: For $2 \times 2$ matrices X with $\operatorname{det} X=1$ we have $X^{2}-(\operatorname{Tr} X) X+1=0$.)

- At a certain chamber on the Coulomb branch, the UV-IR map for line defects implies the following expansions of $F_{A, B, K}$ in terms of the Darboux coordinates $\mathcal{X}_{\gamma}$. (Representatives of the homology classes $\gamma_{1,2,3}$ are shown in the above figure.)

$$
\begin{align*}
& F_{A}=\mathcal{X}_{\gamma_{2}}+\mathcal{X}_{-\gamma_{2}}+\mathcal{X}_{\gamma_{1}-\gamma_{2}} \\
& F_{B}=\mathcal{X}_{\gamma_{3}}+\mathcal{X}_{-\gamma_{3}}+\mathcal{X}_{-\gamma_{1}+\gamma_{3}}  \tag{1.3}\\
& F_{K}=\mathcal{X}_{\gamma_{2}+\gamma_{3}}+\mathcal{X}_{-\gamma_{2}-\gamma_{3}}+\mathcal{X}_{\gamma_{1}-\gamma_{2}+\gamma_{3}}+\mathcal{X}_{-\gamma_{1}-\gamma_{2}+\gamma_{3}}+2 \mathcal{X}_{-\gamma_{2}+\gamma_{3}}
\end{align*}
$$

Moreover here we also have $\mu=-\mathcal{X}_{\gamma_{1}-2 \gamma_{2}-2 \gamma_{3}}$.
Check that (1.2) holds for the expansions in (1.3).

## 2 Exact WKB for the Schrödinger equation

Consider the complex Schrödinger equation

$$
\begin{equation*}
\left[\hbar^{2} \partial_{z}^{2}-V(z)\right] \psi(z, \hbar)=0 \tag{2.1}
\end{equation*}
$$

where $V(z)$ is holomorphic or meromorphic in $z$. Generically $V$ also has nontrivial $\hbar$ dependence. Here we assume that $V$ is $\hbar$-independent for simplicity.

- Given the WKB ansatz

$$
\begin{equation*}
\psi(z, \hbar)=\exp \left(\frac{1}{\hbar} \int_{z_{0}}^{z} \lambda\left(z^{\prime}, \hbar\right) d z^{\prime}\right) \tag{2.2}
\end{equation*}
$$

show that in order for $\psi(z, \hbar)$ to satisfy $(2.1), \lambda$ has to obey the following Riccati equation

$$
\begin{equation*}
\lambda^{2}-V+\hbar \partial_{z} \lambda=0 \tag{2.3}
\end{equation*}
$$

- Construct the formal solution to (2.3) as a formal series in $\hbar$ :

$$
\begin{equation*}
\lambda^{\text {formal }}=\lambda^{(0)}+\sum_{n=1}^{\infty} \hbar^{n} \lambda^{(n)} \tag{2.4}
\end{equation*}
$$

Show that $\lambda^{(n)}$ is uniquely fixed once we choose a sheet of the following Riemann surface

$$
\begin{equation*}
\Sigma=\left\{\left(\lambda^{(0)}\right)^{2}-V=0\right\} \tag{2.5}
\end{equation*}
$$

Write down the first few terms in $\hbar$ of the formal solution. What can you say about $\lambda^{\text {(odd) }}$ ? Note that substituting $\lambda^{\text {formal }}$ back into the WKB ansatz (2.2) produces formal solution $\psi^{\text {formal }}$ to the Schrödinger equation (2.1).

- Consider the Airy equation with $V(z)=z$. Show that one can construct two formal solutions

$$
\begin{equation*}
\psi_{ \pm}^{\text {formal }}(z, \hbar)=\mathrm{e}^{ \pm \hbar \frac{2}{3} z^{3 / 2}} \sum_{n=0}^{\infty} \psi_{ \pm}^{(n)}(z) \hbar^{n} \tag{2.6}
\end{equation*}
$$

where $\psi_{ \pm}^{(n)} \propto z^{-\frac{1}{4}-\frac{3}{2} n}$. The coefficients here are important, so it would be nice if you work them out.

- One way to resum an asymptotic series is the Borel resummation. Given

$$
\begin{equation*}
f(\hbar) \sim \mathrm{e}^{-\hbar^{-1} S_{0}} \sum_{n=0}^{\infty} c_{n} \hbar^{n} \tag{2.7}
\end{equation*}
$$

its Borel transform is

$$
\begin{equation*}
\mathcal{B} f(s)=\sum_{n=0}^{\infty} \frac{c_{n}}{\Gamma(n)}\left(s-S_{0}\right)^{n-1} \tag{2.8}
\end{equation*}
$$

The Borel resummation is defined as the Laplace transformation of $\mathcal{B} f(s)$ :

$$
\begin{equation*}
\mathcal{L}_{\theta}[\mathcal{B} f](\hbar)=\int_{S_{0}}^{\mathrm{e}^{\mathrm{i} \theta \infty}} d s \mathrm{e}^{-\frac{s}{\hbar}} \mathcal{B} f(s), \theta:=\arg (\hbar) \tag{2.9}
\end{equation*}
$$

We say that $f$ is Borel summable if there are no singularities along the integration contour.
Based on the result of Kawai and Takei, in the neighborhood of a simple turning point $z_{0}$, one of the formal solutions $\psi_{ \pm}^{\text {formal }}$ is not Borel summable when

$$
\begin{equation*}
\operatorname{Im}\left(\hbar^{-1} S_{0}(z)\right)=0 \tag{2.10}
\end{equation*}
$$

where

$$
\begin{equation*}
S_{0}(z):=\int_{z_{0}}^{z} \lambda^{(0)}\left(z^{\prime}\right) d z^{\prime} \tag{2.11}
\end{equation*}
$$

The loci in the $z$-plane where (2.10) happens are denoted as Stokes lines. Draw the Stokes lines for the Airy equation.

