
Problem Session

Geometrical structures in 4d N = 2 class S theories

1 Line defects in the 4d SU(2) N = 2∗ theory

Consider the 4d SU(2) N = 2∗ theory, obtained from the 4d SU(2) N = 4 super Yang-

Mills by giving a mass to an adjoint hypermultiplet. The corresponding Riemann surface in

its class S construction is a once-punctured torus, while the Seiberg-Witten curve is given

by

λ2 = (m2p(z|τ) + u)dz2,

where p(z|τ) is the Weierstrass function.
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The moduli space of flat SL(2,C) connections on the once-punctured torus with a fixed

conjugacy class of monodromy around the puncture is identified with the space of SL(2,C)

matrices A,B,M , up to simultaneous conjugation, with ABA−1B−1 = M , where Tr(M) =

µ+ µ−1 is fixed. The algebra of holomorphic functions on such a moduli space is generated

by

FA := TrA, FB := TrB, FK := Tr(AB). (1.1)

Such functions come into physical life when we consider the 4d N = 2∗ theory on R3 × S1,

where they are the VEVs of line defects (corresponding to the A-, B- and K-cycles) wrapped

around the circle.

• Show that

F 2
A + F 2

B + F 2
K − FAFBFK = µ+ µ−1 + 2 (1.2)

(Hint: For 2× 2 matrices X with detX = 1 we have X2 − (TrX)X + 1 = 0.)
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• At a certain chamber on the Coulomb branch, the UV-IR map for line defects implies

the following expansions of FA,B,K in terms of the Darboux coordinates Xγ. (Representatives

of the homology classes γ1,2,3 are shown in the above figure.)

FA = Xγ2 + X−γ2 + Xγ1−γ2 ,

FB = Xγ3 + X−γ3 + X−γ1+γ3 ,

FK = Xγ2+γ3 + X−γ2−γ3 + Xγ1−γ2+γ3 + X−γ1−γ2+γ3 + 2X−γ2+γ3

(1.3)

Moreover here we also have µ = −Xγ1−2γ2−2γ3 .
Check that (1.2) holds for the expansions in (1.3).

2 Exact WKB for the Schrödinger equation

Consider the complex Schrödinger equation[
~2∂2z − V (z)

]
ψ(z, ~) = 0, (2.1)

where V (z) is holomorphic or meromorphic in z. Generically V also has nontrivial ~-

dependence. Here we assume that V is ~-independent for simplicity.

• Given the WKB ansatz

ψ(z, ~) = exp

(
1

~

∫ z

z0

λ(z′, ~)dz′
)
, (2.2)

show that in order for ψ(z, ~) to satisfy (2.1), λ has to obey the following Riccati equation

λ2 − V + ~∂zλ = 0. (2.3)

• Construct the formal solution to (2.3) as a formal series in ~:

λformal = λ(0) +
∞∑
n=1

~nλ(n). (2.4)

Show that λ(n) is uniquely fixed once we choose a sheet of the following Riemann surface

Σ = {
(
λ(0)
)2 − V = 0}. (2.5)

Write down the first few terms in ~ of the formal solution. What can you say about λ(odd)?

Note that substituting λformal back into the WKB ansatz (2.2) produces formal solution

ψformal to the Schrödinger equation (2.1).
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• Consider the Airy equation with V (z) = z. Show that one can construct two formal

solutions

ψformal
± (z, ~) = e±~

2
3
z3/2

∞∑
n=0

ψ
(n)
± (z)~n, (2.6)

where ψ
(n)
± ∝ z−

1
4
− 3

2
n. The coefficients here are important, so it would be nice if you work

them out.

• One way to resum an asymptotic series is the Borel resummation. Given

f(~) ∼ e−~
−1S0

∞∑
n=0

cn~n, (2.7)

its Borel transform is

Bf(s) =
∞∑
n=0

cn
Γ(n)

(s− S0)
n−1. (2.8)

The Borel resummation is defined as the Laplace transformation of Bf(s):

Lθ [Bf ] (~) =

∫ eiθ∞

S0

dse−
s
~Bf(s), θ := arg(~) (2.9)

We say that f is Borel summable if there are no singularities along the integration contour.

Based on the result of Kawai and Takei, in the neighborhood of a simple turning point

z0, one of the formal solutions ψformal
± is not Borel summable when

Im
(
~−1S0(z)

)
= 0, (2.10)

where

S0(z) :=

∫ z

z0

λ(0)(z′)dz′. (2.11)

The loci in the z-plane where (2.10) happens are denoted as Stokes lines. Draw the Stokes

lines for the Airy equation.
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