
Gravity tests of all scales

David Moore, Yale University

School on Table-Top Experiments for Fundamental Physics

September 22, 2022

Plan for these talks:

Lecture 1 (today):

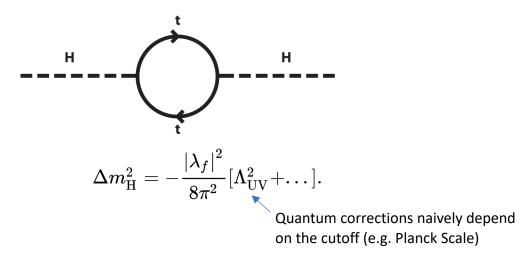
Overview of best current (lab) experiments and constraints

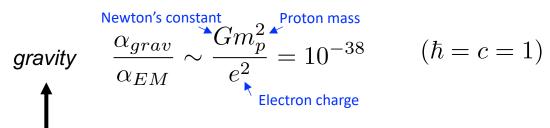
Lecture 2 (tomorrow):

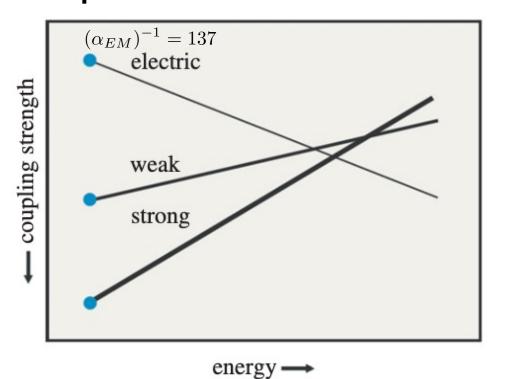
New experimental techniques and frontiers in the coming years

Gravity is "weird"

- Despite the fact that we've been studying gravity longer than any other force, it is in some sense the least understood of the fundamental forces
- It is "weird" in two ways:
 - 1. It is incredibly weak

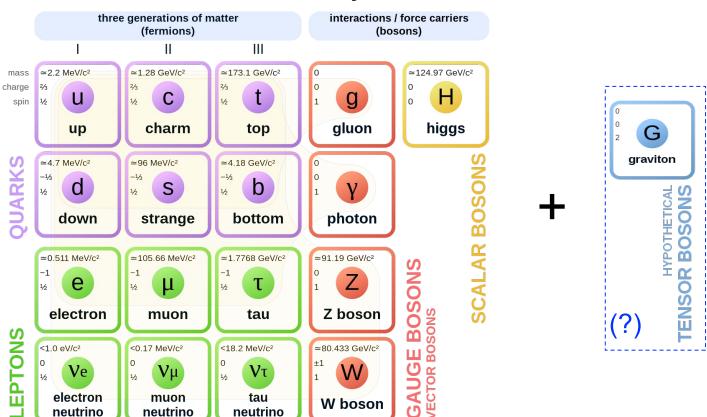

Just a "few" electrons can hold us against the entire mass of the earth


 $M_{earth} = 6 \times 10^{24} \text{ kg } (10^{51} \text{ GeV}!!)$


Gravity is "weird"

- Despite the fact that we've been studying gravity longer than any other force, it is in some sense the least understood of the fundamental forces
- It is "weird" in two ways:
 - 1. It is incredibly weak
 - → "Gauge Hierarchy Problem"

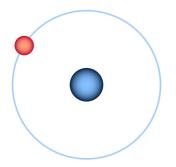
Why is the Higgs mass so much lighter than the Planck mass?


https://en.wikipedia.org/wiki/Hierarchy_problem

F. Wilczek, https://doi.org/10.1098/rsta.2015.0257

Gravity is "weird"

- Despite the fact that we've been studying gravity longer than any other force, it is in some sense the least understood of the fundamental forces
- It is "weird" in two ways:
 - 2. We don't have a consistent microscopic theory (GR + QM = ?)


Standard Model of Elementary Particles

D. Moore, Yale Perimeter, Sept 22, 2022

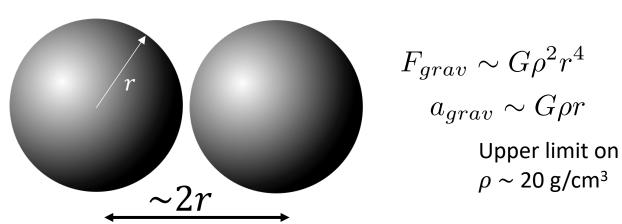
Why are gravitational experiments hard?

- The reason we don't have understand gravity at microscopic distances is related to the first issue
 - This is also what makes any real lab experiments (not using astrophysical masses) so hard!

In SI units:

$$V_{EM} \sim 10 \text{ eV}$$

 $V_{qrav} \sim 10^{-38} \text{ eV}$


Extremely tiny effect in everyday experiments with quantum systems!

Planck mass/energy:

$$\sqrt{\frac{\hbar c^5}{G}} \sim 10^{19} \text{ GeV}$$

Not possible to directly probe the relevant energy scales at colliders!

In general for lab experiments:

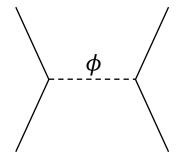
At the same time, electrical non-neutrality of real objects grows in importance!

Practically this means:

- Experiments with ~cm scale masses (~nN) are doable
- 0.1 1 mm scale masses are smallest gravity has been measured for (~fN)
- 1-10 um scale (~zN) might be an ambitious future limit (Heisengberg uncertainty, shielding Casimir backgrounds, etc)

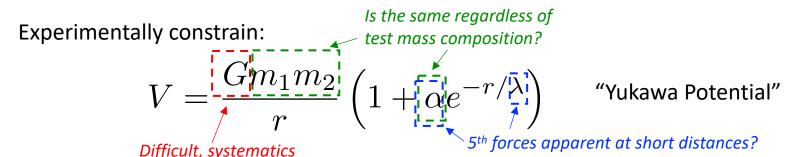
What can we test (in the lab)?

 Laboratory densities and masses are always in the Newtonian limit (no strong field general relativity in the lab!), i.e.:


Perimeter, Sept 22, 2022

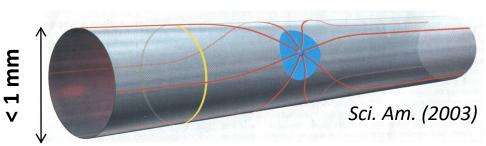
$$\frac{GM}{rc^2} \ll 1$$
 and $v \ll c$

- In this case, Newton's law is an excellent approximation to GR: $V=rac{Gm_1m_2}{m_2}$
- Can basically measure 3 things:
 - 1. Does the Newtonian 1/r² dependence hold at all length scales?
 - 2. Is the force independent of the composition of the masses?
 - 3. What is the exact value of G?


limited measurements

Generic toy model in which these can fail:

Scalar ϕ coupling to neutrons gives 5th force in non-rel. limit:


$$V_{5th}=rac{g_n^2}{4\pi}rac{e^{-m_\phi r}}{r}$$
 ($\hbar=c=1$)

Additional possibilities

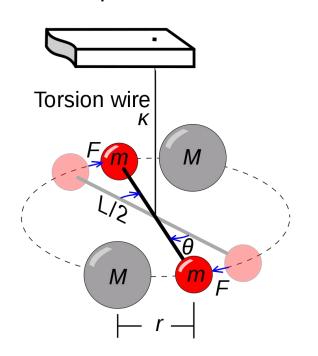
- Instead of adding a "5th force," modify gravity itself:
 - E.g., 1/r² law arises from Gauss's law in 3D, but would differ with more spatial dimensions!
 - This provides a possible solution to the Gauge Hierarchy problem
 - But, since the initial proposal:
 - Eot-Wash (torsion balance) has measured Newton's law down to \sim 50 μ m
 - No evidence for signatures at the LHC (TeV scale)
- Add cosmologically relevant 5th forces (motivated by dark energy) that evade solar system and laboratory tests
 - Generally require a "screening mechanism" that turns force off near mass
 - Examples:
 - Chameleons (range of the force depends on local mass density)
 - Symmetrons (coupling depends on local mass density)
 - Vainshtein mechanism (self-couplings boost kinetic terms in vicinity of mass)
 Perimeter, Sept 22, 2022

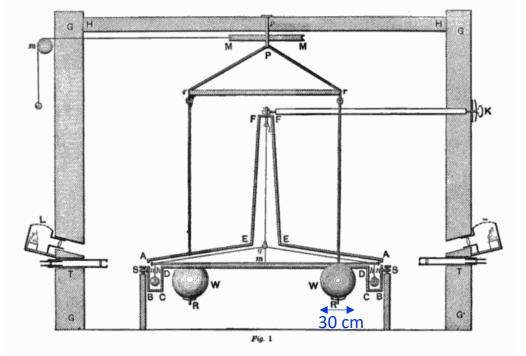
Large extra dimensions:

e.g., Arkani-Hamed et al., Phys. Lett. B 429, 263 (1998)

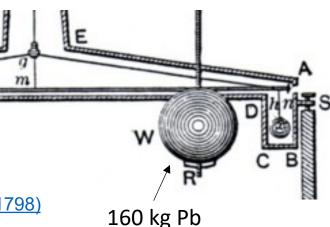
"Dark energy length scale" (possibly just numerology!)

 Λ ~ 2 meV $rac{\hbar c}{\Lambda} \sim 80~\mu\mathrm{m}$


"Beyond the Cosmological standard model" Joyce, Jain, Khoury and Trodden, arXiv:1407.0059


Overview of experimental techniques

- Due to its extreme weakness, gravity is difficult to study as described previously
- For large enough masses, gravitational effects can add up while E&M effects cancel (positive/negative charges)
- "Standard technique" is a torsion balance:


• First designed/built for gravity by John Michell (independent of Coulomb), Cavendish refurbished and

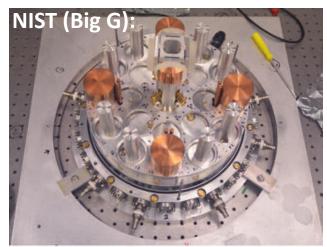
presented results in 1798

In modern interpretation, measured G to ~1% accuracy!

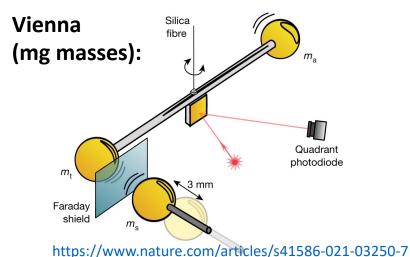
attractors

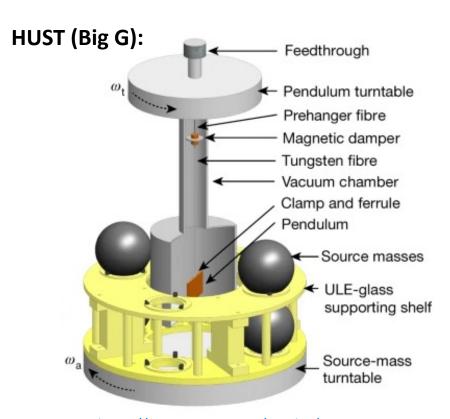
Cavendish, H., Phil. Trans. Royal Soc. London, 88 469 (1798)

Modern torsion balances


Torsion balances remain the most sensitive current method for measuring gravity in the lab over ~10 um

to meter length scales

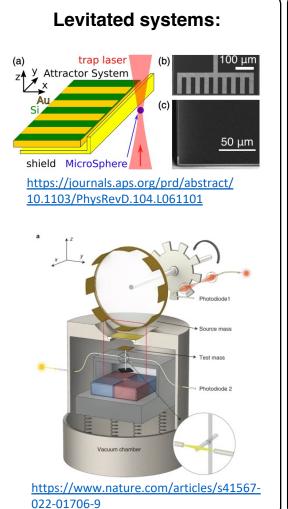

Eot-wash (short-distance tests):

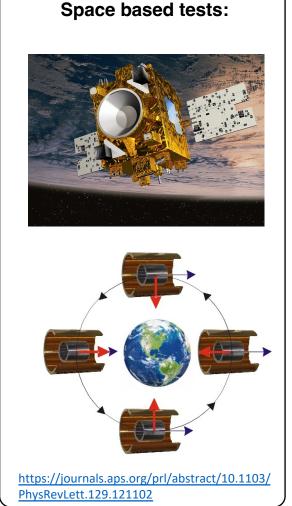


https://doi.org/10.1103/PhysRevLett.124.101101

https://www.nist.gov/news-events/news/2016/11/big-g-redux-solving-mystery-perplexing-result

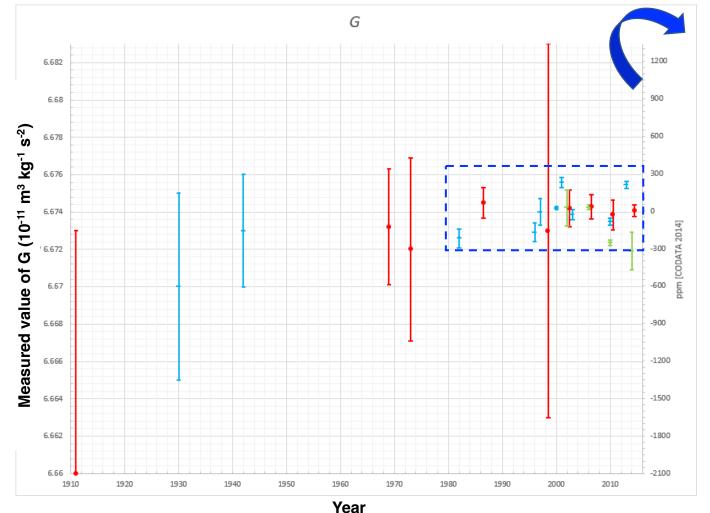
https://www.nature.com/articles/s41586-018-0431-5

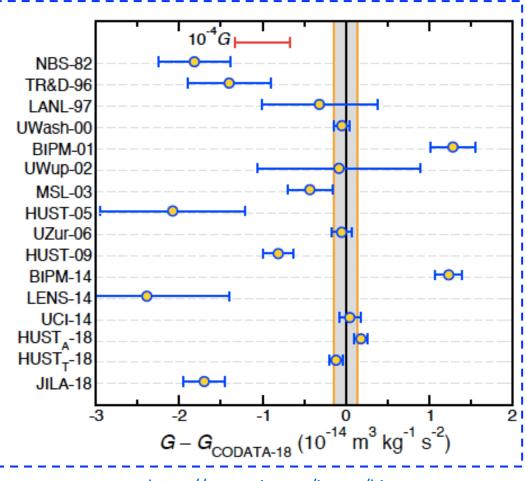

nttps://www.nature.com/articles/s41586-021-03250-/


Beyond torsion balances

 To push to shorter length scales, or higher precision, a number of new techniques have been developed beyond torsion balances

Atom interferometry: 2T t https://journals.aps.org/prl/abstract/10. 1103/PhysRevLett.125.191101





Historical measurements ("Big G")

- Measurements of overall strength of G are extremely challenging:
 - Systematics limited: (E&M effects, knowledge of source mass distribution, vibrations, Newtonian noise, ...)

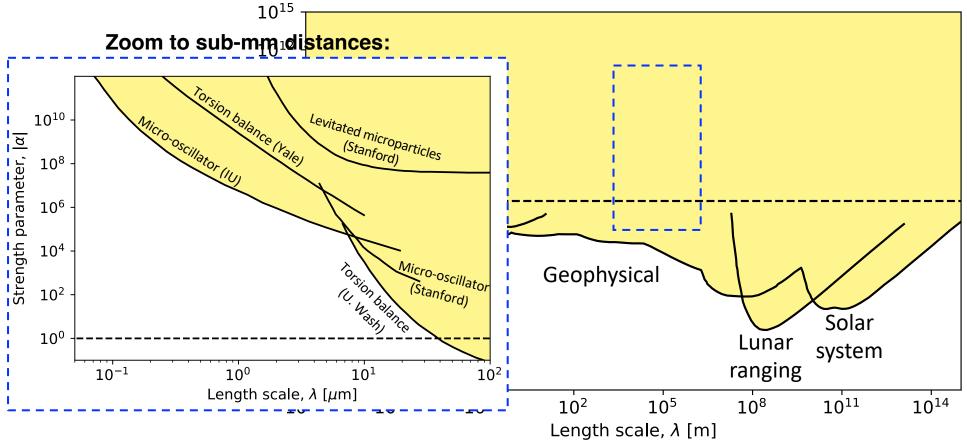
https://www.nist.gov/image/big-gpng

Historical measurements ("Big G")

• Relative uncertainty for the coupling measured for gravity is $\sim 10^5$ times larger than for E&M:

Particle Data Group summary of physical constants:

Quantity	Symbol, equation	Value	Uncertainty (ppb)
speed of light in vacuum	с	299 792 458 m s ⁻¹	exact
Planck constant	h	6.626 070 15×10 ⁻³⁴ J s (or J/Hz) §	exact
Planck constant, reduced	$\hbar \equiv h/2\pi$	1.054 571 817× 10 ⁻³⁴ J s	exact*
		$= 6.582 \ 119 \ 569 \times 10^{-22} \ MeV \ s$	exact*
electron charge magnitude	e	$1.602\ 176\ 634\times10^{-19}\ C$	exact
conversion constant	ħc	197.326 980 4 MeV fm	exact*
conversion constant	$(\hbar c)^2$	0.389 379 372 1 GeV ² mbarn	exact*
electron mass	m_e	$0.510 998 950 00(15) \text{ MeV}/c^2 = 9.109 383 7015(2)$	$28) \times 10^{-31} \text{ kg}$ 0.30
proton mass	m_p	$938.272\ 088\ 16(29)\ \text{MeV}/c^2 = 1.672\ 621\ 923\ 69(5)$	
35		= 1.007 276 466 621(53) u = 1836.152 673 43(1	
neutron mass	m_n	$939.565 \ 420 \ 52(54) \ \text{MeV}/c^2 = 1.008 \ 664 \ 915 \ 95(4)$	49) u 0.57, 0.48
deuteron mass	m_d	$1875.612 942 57(57) \text{ MeV}/c^2$	0.30
unified atomic mass unit**	$u = (\text{mass} ^{12}\text{C atom})/12$	$931.494\ 102\ 42(28)\ MeV/c^2 = 1.660\ 539\ 066\ 60(5)$	$50) \times 10^{-27} \text{ kg}$ 0.30
permittivity of free space	$\epsilon_0 = 1/\mu_0 c^2$	$8.854\ 187\ 8128(13)\ \times 10^{-12}\ \mathrm{F\ m^{-1}}$	0.15
permeability of free space	$\mu_0/(4\pi \times 10^{-7})$	1.000 000 000 55(15) N A ⁻²	0.15
fine-structure constant	$\alpha = e^2/4\pi\epsilon_0\hbar c$	$7.297\ 352\ 5693(11) \times 10^{-3} = 1/137.035\ 999\ 084(2)$	(1)† ‡‡ 0.15
classical electron radius	$r_e = e^2/4\pi\epsilon_0 m_e c^2$	2.817 940 3262(13)×10 ⁻¹⁵ m	0.45
$(e^- \text{ Compton wavelength})/2\pi$	$\dot{\chi}_e = \hbar/m_e c = r_e \alpha^{-1}$	$3.861\ 592\ 6796(12) \times 10^{-13}\ \mathrm{m}$	0.30
Bohr radius $(m_{\text{nucleus}} = \infty)$	$a_{\infty} = 4\pi\epsilon_0 \hbar^2/m_e e^2 = r_e \alpha^{-2}$	$0.529\ 177\ 210\ 903(80) \times 10^{-10}\ m$	0.15
wavelength of 1 eV/c particle	hc/(1 eV)	$1.239\ 841\ 984 \times 10^{-6}\ m$	exact*
Rydberg energy	$hcR_{\infty} = m_e e^4/2(4\pi\epsilon_0)^2 \hbar^2 = m_e c^2 \alpha^2/2$	13.605 693 122 994(26) eV	1.9×10^{-3}
Thomson cross section	$\sigma_T = 8\pi r_e^2 / 3$	0.665 245 873 21(60) barn	0.91
Bohr magneton	$\mu_B = e\hbar/2m_e$	$5.788~381~8060(17)\times10^{-11}~MeV~T^{-1}$	0.30
nuclear magneton	$\mu_N = e\hbar/2m_p$	$3.152\ 451\ 258\ 44(96)\times 10^{-14}\ \mathrm{MeV}\ \mathrm{T}^{-1}$	0.31
electron cyclotron freq./field	$\omega_{\text{cycl}}^e/B = e/m_e$	$1.758\ 820\ 010\ 76(53) \times 10^{11}\ rad\ s^{-1}\ T^{-1}$	0.30
proton cyclotron freq./field	$\omega_{\mathrm{cycl}}^{p'}/B = e/m_p$	$9.578~833~1560(29)\times10^7~{\rm rad~s^{-1}~T^{-1}}$	0.31
gravitational constant [‡]	G_N	$6.674\ 30(15)\times10^{-11}\ \mathrm{m^{3}\ kg^{-1}\ s^{-2}}$	2.2×10^{4}
		$= 6.708 \ 83(15) \times 10^{-39} \ \hbar c \ (\text{GeV}/c^2)^{-2}$	2.2×10^{4}
standard gravitational accel.	g_N	9.806 65 m s ⁻²	exact


Short range forces

More relevant for fundamental physics, the overall strength of gravity (or gravity-like interactions) can also

be measured as a function of length scale:

 $V = \frac{Gm_1m_2}{r} \left(1 + \left[\bar{\alpha} e^{-r/\bar{\lambda}} \right] \right) \qquad \begin{array}{l} \textit{Fifth force coupling to} \\ \textit{mass?} \end{array}$

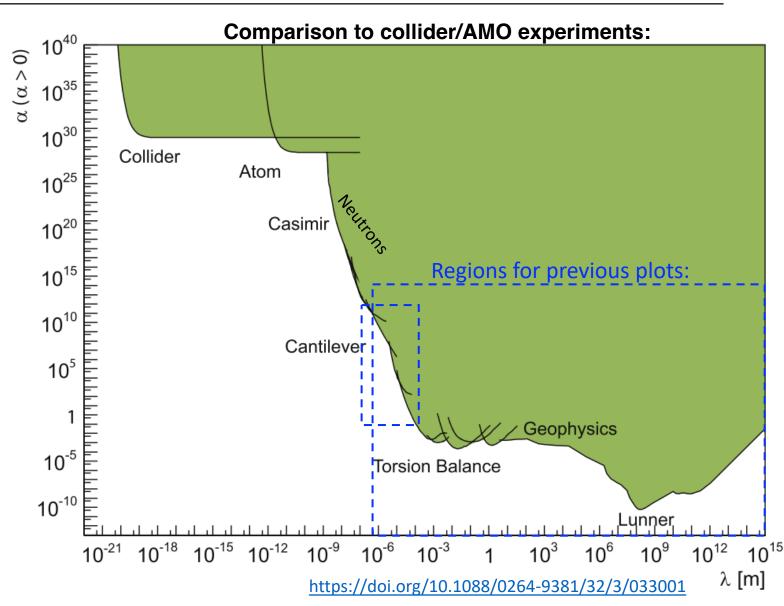
Constraints on strength of gravity-like interactions vs length scale:

"Even-shorter" range forces

- Below μ m distances, constraints on gravity-like forces rapidly fall off
- Best constraints arise from:

1 nm – 1 μ m:

Casimir force measurements


0.1 A – 1 nm:

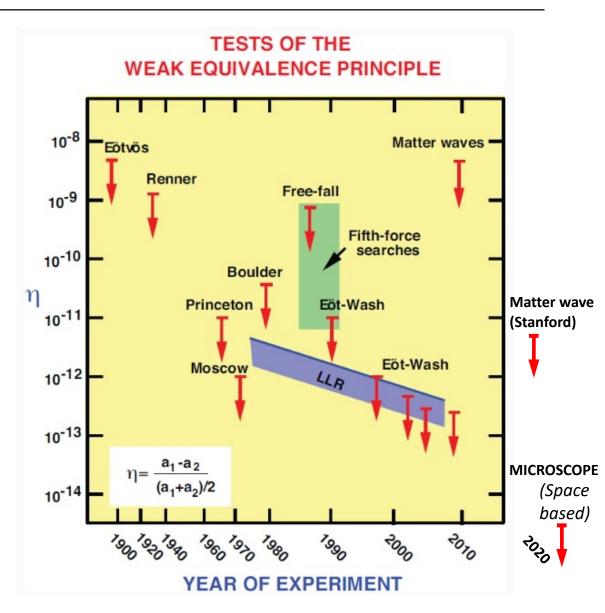
Atomic systems (i.e. atomic/Rydberg energy levels)

<0.1 A:

Colliders

- Gravity-strength interactions are much smaller than experimental sensitivity
- Beyond the required sensitivity, testing gravity at this scale limited by backgrounds (e.g. Casimir)

Equivalence principle


- Beyond measuring the strength of gravity, we'd like to test if the coupling is identical for all materials
- Conceptually, the equivalence principle says that inertial and gravitational mass are the same:

Are these identical?
$$|\overrightarrow{m}a = |\overrightarrow{m}| |\overrightarrow{g}|$$

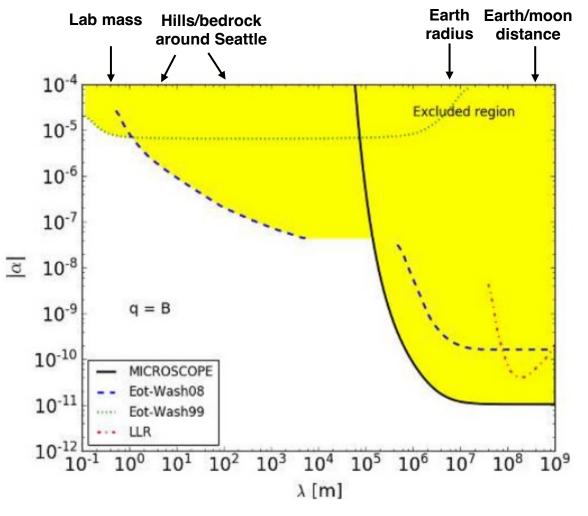
- This is equivalent to saying all materials feel the same gravitational force (not true for other interactions!)
- Famously Loránd Eötvös performed the first accurate test with a torsion balance (1885-1909)
- Constrain Eötvös parameter:

$$\eta_{1,2} = \frac{a_1 - a_2}{(a_1 + a_2)/2} = \frac{(m_g/m_i)_1 - (m_g/m_i)_2}{[(m_g/m_i)_1 + (m_g/m_i)_2]/2}$$

- Note in the lab we test the "weak" equivalence principle
 - "Strong" EP also includes gravitational selfbinding energy

Equivalence principle

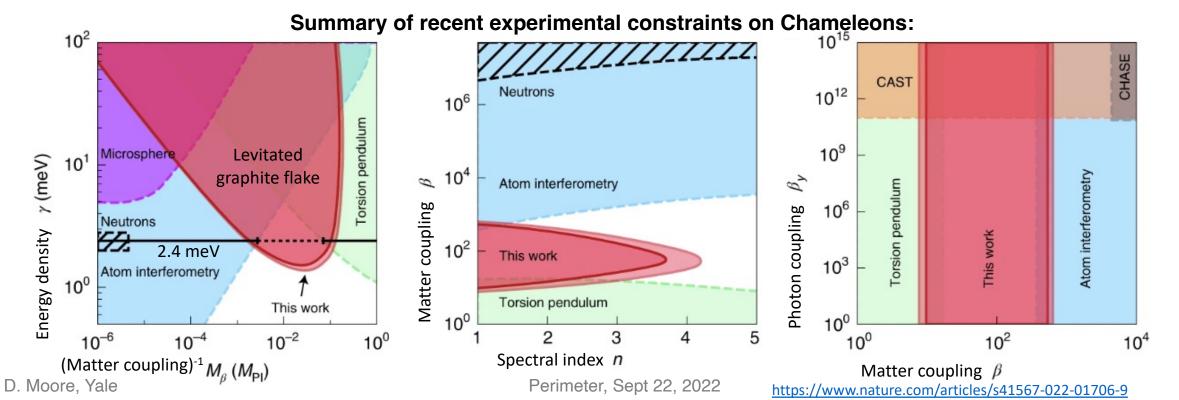
Equivalence principle violations may arise from a "5th force" rather than gravity itself:


$$V = \frac{G[m_1 m_2]}{r} \left(1 + [\alpha]e^{-r/\lambda} \right)$$

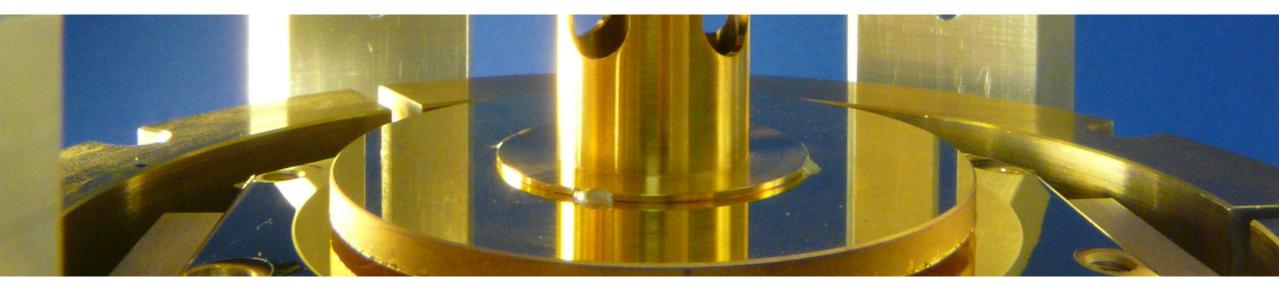
- In this case, searches for EP violations should be performed as a function of length scale
- In general, the Eötvös parameter can be written in a length scale dependent form, e.g. for Pt/Ti:

$$\eta = \alpha \left[\left(\frac{q}{\mu} \right)_{\text{Pt}} - \left(\frac{q}{\mu} \right)_{\text{Ti}} \right] \left(\frac{q}{\mu} \right)_{E} \left(1 + \frac{r}{\lambda} \right) e^{-r/\lambda}$$

• Generically the charges coupling to the force, *q*, can be B, B-L,


Length scale dependent tests of the weak EP:

https://link.springer.com/article/10.12942/lrr-2014-4


"Screened" forces

- Finally, there has been recent interest in searches for 5th forces that do not follow the standard "Yukawa" potential
- These are typically motivated by dark energy models, in which Eot-Wash and other bounds are evaded by "screening mechanisms
- In the "Chameleon" model, the range of the force depends on the local mass density:
 - The standard Chameleon models have now been fully ruled out by laboratory tests (Atom interferometry, levitated systems)

Summary

- Despite the fact that we've been studying gravity for longer than all the other fundamental forces, we have the weakest experimental constraints on its nature
 - This is due to its extreme weakness compared to the other forces (~10⁻⁴⁰ the E&M force in a hydrogen atom)
- Torsion balances provided the first laboratory measurements of gravity, and experiments like Eot-Wash remain at the forefront of the field
- A number of new techniques are aiming to push these measurements to shorter distances or higher precision (next lecture!)

