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Plan for these talks:

Lecture 1 (yesterday):

Overview of best current (lab) experiments and constraints

Lecture 2 (today):

New experimental techniques and frontiers in the coming years

D. Moore, Yale Perimeter, Sept 23, 2022



Current experimental frontiers

» Last lecture we summarized the existing
constraints on gravity-like forces

« There are a number of new ideas to push
the sensitivity of experiments towards:

Space-based

1. Shorter Distances tests

Atom

Torsion interferometry
4~ palances

2. Smaller Masses

Quantum
tests

3. Shorter

distances
4. Quantum tests

« Many of the new techniques under
development are aimed at multiple frontiers

< lLevitated »
systems

|

« The first tests of gravity between quantum
systems may also be on the horizon!

Smaller masses
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Experimental Frontiers:

1. Shorter Distances

D. Moore, Yale Perimeter, Sept 23, 2022



Shorter distances

« Torsion balances (Eot-Wash) have now pushed measurements of gravitational strength interactions down
to ~50 um distances

* Measurements are not limited by intrinsic sensitivity, but instead by backgrounds
+ In particular, electrostatic “patch potentials” on shielding foil are extremely difficult to avoid
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Levitated optomechanical systems

« New techniques using optically trapped particles (~100 nm to ~10 um silica spheres) are being developed
to probe shorter distances
« As with the torsion balance, existing systems are limited by backgrounds rather than sensitivity

« Patch potentials, vibrations, scattered trapping light, ...
« The key challenge is to design an attractor that modulates the mass at micron distances and is robust to
these backgrounds (“lock-in measurement”)
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Current and future sensitivity (levitated systems)

« First gravity test with a levitated system was recently performed by Stanford group (see talk by Giorgio)
» Further reducing backgrounds may allow gravity-strength interactions to be measured down to ~1-10

micron distances

First results from Stanford and near term sensitivity:
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Casimir force

« Below ~micron distances, even a technically perfect experiment of the standard type (mass moving
behind shield) would start to be limited by fundamental E&M backgrounds

« Shielding the Casimir force itself requires ~micron thick layers for real metals (e.g. Au)
» Further progress would require new ideas or accurate subtraction of Casimir force background

Schematic of Casimir force in vacuum Calculation of differential Casimir force:
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Au — 10V — s$=5.0 um, Au/Si |}
shield = 18 —— s$=5.0 um, Au/Cu
o 10
/ . o
~ ./'/ h 8 1 0-19
//' 8 é 10'20
. O i
N / . J S 102! |
__ S S 10 22 :
S vecuum g 107}
uctuations o 24
https://en.wikipedia.org/wiki/Casimir effect 10 F
Note there is a completely equivalent 1072 L : : ' '

description in terms of surface dipoles!
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.72.021301

D. Moore, Yale Perimeter, Sept 23, 2022

Shield thickness, t [um]



https://en.wikipedia.org/wiki/Casimir_effect
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Mossbauer spectroscopy

« Rather than shielding Casimir (and other E&M effects) with a conducting layer, use the electron cloud

around a nucleus!
« Mossbauer effect allows absorption spectroscopy measurement of nuclear transitions

« Similar to atomic absorption spectroscopy but at keV energies (with relative linewidths of 10-12 to 10-25!)

» First experiments expected to be sensitivity rather than background limited!
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Use of synchrotron light sources to directly
excite transitions may give further improvement! ;
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Experimental Frontiers:

2. Smaller Masses

D. Moore, Yale

Perimeter, Sept 23, 2022
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Smaller masses

« Because there is a maximum practical density (p < 20 g/cm3),
smaller distances often correspond to smaller masses

« E.g., for Eot-Wash, divide attractor into 120-fold “fingers”, each with
mass ~100 mg

» For classical experiments, the optimal arrangement of mass is just
a signal-to-background question

« However, single isolated masses are likely required for detecting
gravity in experiments with “quantum” masses

« The smallest masses for which we can measure gravity to date are
~10% x larger than Mg, but may decrease quickly in near future!

State-of-the-art (see next slide):

Planck Mass:
10% x lower
mass

> d
<+

0.1 mm ->20ug

A »
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~100 mg
per “finger”

3/PhysRevlett.124.101101
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Smaller masses

« The Vienna group (Aspelmeyer) has recently measured gravity between two isolated ~mm scale masses
using a miniature torsion balance!

« Working towards smaller masses using torsion balances, as well as levitated systems (magnetic,
optical)

Schematic of experimental setup:
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Experimental Frontiers:

3. Higher Precision

D. Moore, Yale
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Atom interferometry (equivalence principle)

« Atom interferometry provides an extremely sensitive

tool for searching for weak interactions

« Dual-species atom interferometers (e.g. 8°Rb, 8’Rb)

have long been envisioned for EP tests

 Current state of the art in Stanford interferometer

(Kasevich group) isn ~ 10712

Current systematic uncertainties (Stanford):

Parameter Shift Uncertainty
Total kinematic 1.5 2.0
Az 1.0
Av, 1.5 0.7
Ax 0.04
Av, 0.04
Ay 0.2
Av, 0.2
Width 1.6
ac-Stark shift 2.7
Magnetic gradient =59 0.5
Pulse timing 0.04
Blackbody radiation 0.01
Total systematic —4.4 34
Statistical 1.8

https://journals.aps.org/prl/abstract/10.1103/PhysRevlett.125.191101

See also: https://www.nature.com/articles/ncomms15529 (Firenze group [Tino])

D. Moore, Yale
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Atom interferometry (ISL)

« Beyond EP tests, atom interferometry has also been proposed for inverse square law (ISL) tests

* New experiment under construction at Northwestern (Kovachy group) to search at 10 cm — 1 m length
scales

« Aims to probe below best torsion balance sensitivity at these distances (a <10-3)

Experimental apparatus (Northwestern):
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Atom interferometry (ISL)

« Micron distance ISL tests with atom interferometry have also been proposed
« Similar to nanoparticle in standing wave trap (in particular, similar expected backgrounds!)

Schematic of short distance ISL test: Projected (background free) sensitivity:
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Matter waves with nanospheres

« For forces that couple to mass, making the interferometer out of a heavier particle than an atom may also
beneficial (e.g. smaller wavepacket expansion -> sub-um forces, high masses, ...)

« Doesn’t necessarily help with backgrounds, but extremely high sensitivity is in principle possible (to
whatever forces are present)

« Would require technical developments beyond the state-of-the-art to realize this

Near-field Talbot interferometer for Predicted interference pattern: Projected sensitivity (background free):
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Ty T Ty
¥~ Decca (2007)

D, ot Excluded by experiment

X(um)
o

Masuda (2010)

F - Lamoreaux (1997)
~~-.\“

Ly
)

1 05 i) 0.5 1

D. Moore, Yale Perimeter, Sept 23, 2022 https://journals.aps.org/prd/abstract/10.1103/PhysRevD.92.062002 1g



https://journals.aps.org/prd/abstract/10.1103/PhysRevD.92.062002

Cryogenic torsion balances

« University of Washington group is developing new generation of cryogenic torsion balances:

 Lower thermal noise

« Possibly lower patch potential backgrounds (?)
« However, additional complexity with cryogenics, need to control pulse tube vibrations, etc

Schematic of cryostat:
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Measured torque noise spectrum:
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Spaced based tests (MICROSCOPE)

« Very simple yet precise experiment to test the EP can be performed with drag free test masses orbiting
the earth
« Look at differential acceleration between Pt and Ti test masses in free fall

 Data taken between 2016-2018 — final result in PRL last week

Measured differential accelerations:
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Experimental Frontiers:

4. Quantum tests

D. Moore, Yale

Perimeter, Sept 23, 2022
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Gravitational entanglement of masses

« Thought experiment along these lines was famously proposed by Feynman at 1957 Chapel Hill
Conference on “The Role of Gravitation in Physics”

https://edition-open-sources.org/media/sources/5/Sources5.pdf

« While still well beyond current state-of-the-art, renewed interest in the possibility that levitated systems
may allow realization of this sort of experiment

« Two general proposals:

Gravitational interaction of two superpositions:

system

0.'
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Conducting

...
.

.0
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' system 2

Anupam Mazumdar, University of Groningen

Bose et al. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.119.240401 (2017)

Marletto and Vedral, https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.119.240402 (2017)

D. Moore, Yale

Perimeter, Sept 23, 2022

(a)
5 o
= 10°E 25
8 10* . e 20
: .
gg 103 .............. 15
81w ™ 10
g
1010 108 10~ 107%
coupling g/@o
(b)
-4 | err——t : ; T I ; : bl
B R e e Coulgn
;; ig—le » iy ‘
B gy [ Gravity
g 10 A et i 777\.q. e —
5 10 50 100 500

particle separation d/R

Gravitational interaction of two delocalized particles:

O¢n, 7, duIy [e30)

https://journals.aps.org/prl/abstract/10.1103/PhysRevlLett.127.023601

22


https://edition-open-sources.org/media/sources/5/Sources5.pdf
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.119.240401
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.119.240402
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.127.023601

Gravitational entanglement of masses

« Thought experiment along these lines was famously proposed by Feynman at 1957 Chapel Hill

Confe

ance on “The RBole of (Gravitation in Phveicg”
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may a

« Twog

Gr

See talks by Markus for full details

Many of the experimental challenges to shield non-gravitational .
interactions are similar to short distance tests of the inverse square law ticles:

Additional challenges:
* Create delocalized states ;
* Avoid decoherence :

Beyond tests of gravitational entanglement, reaching these goals is likely to
substantially advance tests of the ISL at short distance!

Bose et al. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.119.240401 (2017)
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Interactions with classical masses

* We already heard this week about beautiful experiments with a
quantum test mass and a classical attractor:

« E.g., UCN bouncing in the earth’s gravitational field

« Other recent proposals look at similar experimental signatures for
an atom interferometer and a classical low frequency oscillator

Proposal to entangle atoms with low frequency (classical) oscillator:
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Predicted revivals in measurements of
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atom population:
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https://journals.aps.org/prxquantum/pdf/10.1103/PRXQuantum.2.030330

Revival phenomenon also possible semi-classically, and verification of entanglement appears to require the

See e.g., https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.4.013023

https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.4.013024
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Summary

* Due to its weakness, gravity is extremely challenging to study in the lab and torsion balances remain the
preferred experimental method at mm to meter length scales

* Frontiers in the coming years are:
« Shorter distances
» Higher precision
« Smaller masses and quantum tests

* Huge number of new ideas — progress likely on all of these frontiers in the near term!

D. Moore, Yale



