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Richard Feynman (1918–1988)
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Richard Feynman’s Last Blackboard at Caltech
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Bethe Ansatz

An elegant method for solving quantum-mechanical models,
introduced by Hans Bethe in 1931 in the case of Heisenberg’s XXX
model (1-dim. spin chain with space of states (C2)⊗N).

Namely, Bethe proposed an explicit formula for the eigenvectors of the
Hamiltonian of the XXX model depending on certain parameters.
These are indeed eigenvectors iff a certain system of equations is
satisfied – Bethe Ansatz equations (BAE).

This method has subsequently been applied to many other integrable
models, both discrete (QM) and continuous (2d QFTs), and proved
to be surprisingly successful.

Why was Feynman so interested in it?
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Feynman’s notes, Caltech Lunch Seminar, 01/22/1987

(summary of the beginning)

Bethe Ansatz

Many different two-dimensional field theories have been proposed as
models to learn from.

Sometimes, surprisingly, they can be solved; for example

Non-linear Schrödinger
Thirring
sine-Gordon
Gross-Neveu (running coupling constant)
O(N) σ-model
Two-dimensional statistical mechanics (Onsager, Baxter)
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All solved by the same method: guessing the form of eigenvectors

Bethe Ansatz (1931)

Mystery: When will it work?

Connection to classical solitons [later in the notes: Quantum KdV]

Why study?

(1) QCD & formulation of quantum field theory

(2) Tool useful in other examples such as Kondo problem

(3) Know how to solve every problem that has been solved

(4) Fun
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Some recent works linking BA & 4d gauge theory

Lipatov (1993), Faddeev-Korchemsky (1994) QCD  XXX model

Minahan-Zarembo (2002), Beisert-Staudacher (2003) N=4 4d SYM
(AdS5/CFT4) Gromov-Kazakov-Leurent-Volin (2013) QQ-system

Nekrasov-Shatashvili (2009) N=2 4d SYM with Ω-background  
Yang-Yang functions of integrable systems

Gaiotto-Witten (2011) S-duality in N=4 4d SYM  Gaudin model

Costello (2013), Costello-Witten-Yamazaki (2017),
Costello-Gaiotto-Yagi (2021) 4d Chern-Simons theory  integrable
models

Gaiotto-Lee-Vicedo-Wu (2020) Kondo problem & Gaudin model
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Gaudin model

Space of states: (C2)⊗N , or more generally, ⊗Ni=1Vλi

Vλ, λ ∈ Z≥0 – finite-dim. rep. of sl2 of dim. λ+ 1 (spin λ/2)

Basis of sl2: e =

(
0 1
0 0

)
h =

(
1 0
0 −1

)
e =

(
0 0
1 0

)

Gaudin Hamiltonians (for mutually distinct zi ∈ C):

Hi =
∑
j 6=i

e(i) ⊗ f (j) + f (i) ⊗ e(j) + 1
2
h(i) ⊗ h(j)

zi − zj
, i = 1, . . . , N

(appear on the RHS of the KZ equations).
They commute with each other and the diagonal action of sl2.

Problem: diagonalize them on ⊗Ni=1Vλi
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More precisely, the decomposition of ⊗Ni=1Vλi under the diagonal sl2
action is preserved by the Hi’s.

Hence we consider the problem of finding eigenvectors and eigenvalues
of the Hi’s on the subspace of highest weight vectors in ⊗Ni=1Vλi
w.r.t. diagonal sl2 (i.e. annihilited by the diagonal e) of weight

λ∞ :=
N∑
i=1

λi − 2m

(i.e. h acts on them by multiplication by λ∞) for all m ∈ Z≥0

For m = 0, this subspace is spanned by

|0〉 = ⊗Ni=1vλi

where vλi is the highest weight vector in Vλi .
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Bethe Ansatz in Gaudin model

For w ∈ C, w 6= zi, let

f(w) =
N∑
i=1

f (i)

w − zi

Define the Bethe vector

|w1, w2, . . . , wm〉 := f(w1)f(w2) . . . f(wm)|0〉

Lemma.This vector is an eigenvector of the Gaudin Hamiltonians
iff the following system of Bethe Ansatz equations is satisfied:

N∑
i=1

λi/2

wj − zi
−
∑
s 6=j

1

wj − ws
= 0, j = 1, . . . ,m
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Eigenvalues of the Gaudin Hamiltonians

Hi |w1, w2, . . . , wm〉 = µi |w1, w2, . . . , wm〉

Let v(z) :=
N∑
i=1

λi(λi + 2)/4

(z − zi)2
+

N∑
i=1

µi
z − zi

.

v(z) = u(z)2 − ∂zu(z), u(z) =
N∑
i=1

λi/2

z − zi
−

m∑
j=1

1

z − wj

Miura transformation

∂2z − v(z) = (∂z − u(z))(∂z + u(z)).
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PSL2-opers describe the spectrum

PSL2-oper (a.k.a. projective connection) is a differential operator

∂2z − v(z) : K−1/2 −→ K3/2

(transforms as the stress tensor in CFT)

The joint spectrum of the Gaudin Hamiltonians:

PSL2-opers on CP1

with regular singularities at zi, i = 1, . . . , N , and ∞;

with leading terms λi(λi + 2)/4, i = 1, . . . , N , and λ∞(λ∞+ 2)/4;

with trivial monodromy

These conditions ⇔ the PSL2-oper is the Miura transformation of
first-order diff. operator with reg. sing. & residues λi at zi, λ∞ at z∞.
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Generalization to an arbitrary simple Lie algebra g

It is easy to construct analogues of the (quadratic) Gaudin
Hamiltonians using an invariant bilinear form on g:

Hi =
∑
j 6=i

∑
a J

(i)
a Ja(j)

zi − zj
, i = 1, . . . , N

Questions:

Are there higher order commuting Hamiltonians forming a
commutative subalgebra A ⊂ U(g)⊗N ?

Is there an explicit formula for the eigenvectors?

What are the corresponding Bethe Ansatz equations?

Can we describe the spectrum in terms of geometric objects on
CP1 like opers?
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Master Algebra

Feigin-F.-Reshetikhin (1994); F.’s ICMP’94 talk

Let ĝ be the affine Kac–Moody algebra associated to g((t)).

For k ∈ C, let Ũ(ĝ)k be the completion of U(ĝ) with level k.

Example. The coefficients Sn of Sugawara current:

S(z) =
1

2

∑
a

: Ja(z)Ja(z) :=
∑
n∈Z

Snz
−n−2

Commutation relations: [Sn, J
a
m] = −(k + h∨)mJan+m

where h∨ is the dual Coxeter number (h∨ = n for sln).

Thus, Sn are central elements of Ũ(ĝ)k when k = −h∨, critical level
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The center of the completed enveloping algebra of ĝ

Let Z(ĝ)k be the center of Ũ(ĝ)k.

Theorem (Feigin-F.)

(1) Z(ĝ)−h∨ ' Fun OpLG(D×)

(2) If k 6= −h∨, then Z(ĝ)k = C.

OpLG(D×) – the space of LG-opers on D×, the punctured formal disc

Here LG – simple Lie group of adjoint type whose Lie algebra

Lg is Langlands dual to g

Edward Frenkel (UC Berkeley) Feynman’s Last Blackboard July 25, 2023 16 / 42



17/42

Opers

If g = sl2, then LG = PSL2 and PSL2-oper on D× is a second order
differential operator ∂2z − v(z) where v(z) =

∑
n∈Z vnz

−n−2.

Therefore, Fun OpPSL2
(D×) is a completion of C[vn]∼n∈Z.

The isomorphism Z(V−2(sl2)) ' Fun OpPSL2
(Dx)

sends Sn 7→ vn

LG-opers are, roughly speaking, gauge equivalence classes Lg-valued
connections ∂z + A(z) on D×

(Drinfeld-Sokolov (1984), Beilinson-Drinfeld (2005))

Fun OpLG(D×) is freely generated by ` = rk(g) series of elements
vi,n, i = 1, . . . , `;n ∈ Z, which under the F-F isomorphism correspond
to higher Sugawaras in the center Z(ĝ)−h∨ .

Edward Frenkel (UC Berkeley) Feynman’s Last Blackboard July 25, 2023 17 / 42



17/42

Opers

If g = sl2, then LG = PSL2 and PSL2-oper on D× is a second order
differential operator ∂2z − v(z) where v(z) =

∑
n∈Z vnz

−n−2.

Therefore, Fun OpPSL2
(D×) is a completion of C[vn]∼n∈Z.

The isomorphism Z(V−2(sl2)) ' Fun OpPSL2
(Dx)

sends Sn 7→ vn

LG-opers are, roughly speaking, gauge equivalence classes Lg-valued
connections ∂z + A(z) on D×

(Drinfeld-Sokolov (1984), Beilinson-Drinfeld (2005))

Fun OpLG(D×) is freely generated by ` = rk(g) series of elements
vi,n, i = 1, . . . , `;n ∈ Z, which under the F-F isomorphism correspond
to higher Sugawaras in the center Z(ĝ)−h∨ .
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Back to Gaudin model

Using ĝ-conformal blocks, it is easy to construct a family of
homomorphisms Z(ĝ)−h∨ → U(g)⊗N depending on
z = {zi, i = 1, . . . , N}, such that

S(z) 7→
N∑
i=1

Cas(i)

(z − zi)2
+

N∑
i=1

Hi

z − zi

Higher Sugawaras then give rise to higher Gaudin Hamiltonians.

The image Az is a commutative subalgebra of U(g)⊗N and the
problem is to diagonalize its action on ⊗Ni=1Vλi .

F-F-R constructed Bethe vectors and Bethe Ansatz equations using
the free field (Wakimoto) realization of ĝ. However, for g 6= sl2 they
do not always give rise to a basis of eigenvectors.
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The spectrum and Langlands duality

Nonetheless, we can use the F-F isomorphism to describe the
spectrum of Az on ⊗Ni=1Vλi directly without invoking Bethe vectors!

Theorem (Feigin-F.-Rybnikov)
The joint spectrum of the algebra Az of generalized Gaudin
Hamiltonians on ⊗Ni=1Vλi is in bijection with the set of LG-opers on
CP1 with regular singularities at zi, i = 1, . . . , N , and ∞ with the
“leading terms” determined by λi, i = 1, . . . , N , and λ∞ and
trivial monodromy.

Gaiotto-Witten (2011) interpreted this result as a consequence of
S-duality of 4d SYM, which we will discuss in a moment.

There is also a generalization with irregular singularities,
Feigin-F.-Toledano Laredo & Rybnikov (2007).
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Langlands Correspondence

In mathematics, Langlands correspondence can be formulated in 3
different domains (in the framework of André Weil’s Rosetta Stone):

Number Fields Curves over Fq Curves over C

Langlands initially formulated his correspondence (in the late 1960s)
in the first two domains, aiming to solve difficult questions in Number
Theory using tools of Harmonic Analysis.

Starting in the 1980s, in the works of Deligne, Drinfeld, Laumon and
others, similar structures were found in the third domain, giving rise
to the geometric Langlands correspondence.

However, there was a significant difference between the formulations
in the first two domains and the third.
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In the first two domains, we have the Hilbert space of functions on a
certain natural discrete set with a measure, attached to a reductive
algebraic group G, and a family of commuting Hecke operators
acting on it. Langlands correspondence describes their joint spectra in
terms of homomorpisms of the relevant Galois group to LG.

On the other hand, in the geometric Langlands correspondence for a
Riemann surface X, we have a category of sheaves on the moduli
stack of G-bundles on X and Hecke functors acting on this
category. The geometric Langlands correspondence can be viewed as
an equivalence between this category and another category, associated
to LG.

The prevailing wisdom in the subject was that a function-theoretic
formulation was not appropriate, or even possible, for complex curves.
This turned out to be incorrect!
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S-duality

Kapustin-Witten (2006) linked the geometric/categorical Langlands
correspondence for a Riemann surface X to the S-duality of (twisted
topological) N = 4 4d SYM theories with gauge groups Gc and LGc

on the 4-manifold Σ×X.

Specifically, to the equivalence of the corresponding categories of A-
and B-branes on the Hitchin moduli spaces, which naturally appear
after the 2d compactification along X (e.g. Hecke functors become ’t
Hooft line operators acting on A-branes, etc.). This has inspred a
great deal of research in this area.

S-duality has an explanation in terms of string theory (Vafa (1998)):
namely, we realize N = 4 4d SYM theories as (orbifolds of)
compactifications on dual tori of Type IIA (or IIB) string theories on
ALE spaces & applying T -duality twice, for both circles on the torus.
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Analytic Langlands Correspondence

Etingof-F.-Kazhdan (2019-2021) proposed a novel analytic version
of the Langlands correspondence for complex curves (i.e.
function-theoretic instead of sheaf-theoretic), following earlier works
by Teschner (2017) and Langlands (2018).

Moreover, the two versions (categorical & analytic) complement each
other. We can use each of them to gain new insights about the other.

Analogy: correlation functions in 2D conformal field theory are
single-valued bilinear combinations of (multi-valued) conformal and
anti-conformal blocks.

Gaiotto-Witten (2021) have given an elegant interpretation of the
analytic Langlands correspondence in terms of the S-duality and the
brane quantization (Gukov-Witten (2008))
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A brief summary of E-F-K

For each pointed Riemann surface X and a Lie group G there is a
Hilbert space HX,G of half-densities on BunG and a family of
commuting operators on it:

Hecke operators (integral);

differential operators, holomorphic (Beilinson-Drinfeld) and
anti-holomorphic.

X = CP1 – these differential operators are the generalized Gaudin
Hamiltonians (and their complex conjugates)!

Conjecture: The joint spectrum of these commuting operators can
be identified with the set of LG-opers on X whose monodromy is in
the split real form LG(R) of LG(C).

This is the analytic Langlands correspondence for curves over C.
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Analytic Langlands Correspondence for curves over R

Next, we consider the case of an algebraic curve defined over R,
rather than over C (E-F-K, to appear soon).

If our curve is CP1, this gives us a unified framework for a large
class of Gaudin models, with tensor products of representations of g
of different types as the spaces of states. A similar picture appears in
higher genera as well.

The Hamiltonians of all of these quantum integrable systems come
from the same master algebra Z(ĝ)−h∨ which (via the F-F
isomorphism we have discussed) is isomorphic to the algebra of
functions on OpLG(D×).
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This, and the existence of the commuting Hecke operators, implies
that the spectrum can be expressed in terms of LG-opers on CP1

(with singularities at our points) whose monodromy satisfies certain
conditions (depending on the types of these representations).

The simplest case: finite-dimensional representations of g. Then the
spectrum consists of LG-opers with trivial monodromy.

Other types of representations =⇒ other monodromy conditions.

[A closely related description of the spectra of the Gaudin
Hamiltonians has been obtained in some cases by
Nekrasov-Rosly-Shatashvili (2011) by other methods.]

Edward Frenkel (UC Berkeley) Feynman’s Last Blackboard July 25, 2023 26 / 42



27/42

This kind of description suggests the following modern version of
Bethe Ansatz:

It is no longer about finding explicit formulas for eigenvectors of the
commuting quantum Hamiltonians but about describing their joint
spectrum in terms of dual classical geometric objects (e.g. LG-opers).

Such a description of the spectrum can be seen as a particular
duality, which may well be related to a fundamental duality of QFT
and/or string theory. Our challenge is then to determine what it is.

(Finding a master algebra of commuting quantum Hamiltonians and
finding its spectrum can also be helpful.)

For example, in the case of the Gaudin model, mathematically this
duality is a special case of the Langlands duality, and it is a
manifestation of S-duality of N = 4 4d SYM theories, which can be
derived from Type IIA/B string theory.

I will now describe other examples.
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Deformations

We can consider ĝ away from the critical level. This corresponds
to changing the coupling constant of the N = 4 4d (twisted)
SYM theory. We still have S-duality but there is no longer a
classical side; both sides are quantum (quantum Langlands).

We can stay at the critical level but deform U(ĝ) to the quantum
affine algebra Uq(ĝ) (or the Yangian Y (g)). Then Gaudin model
gets deformed to a quantum spin chain of XXZ (or XXX) type,
and on the other side opers become q-opers.

We can do both deformations (quantum q-Langlands).

We can go from g to ĝ, and hence from ĝ to a double loop
algebra. As the result, we obtain affine Gaudin models and
opers become affine opers. (We can also turn on q.)
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Quantum Langlands

Recall the F-F isomorphism: Z(ĝ)−h∨ ' Fun OpLG(D×)

The RHS is actually the classical W-algebra W(Lg) which is the
Poisson algebra of functions on the phase space of Lg-KdV system.

The center Z(ĝ)−h∨ also has a natural Poisson structure, and the F-F
isomorphism is in fact an isomorphism of Poisson algebras.

Both algebras can be deformed: W(Lg) WLβ(Lg), where Lβ is a
small parameter.

Z(ĝ)−h∨  Wβ(g), where β is large.

Duality (F-F (1991)): Wβ(g) ' WLβ(Lg) if Lβ =
1

ngβ

This is connected to both T -duality and S-duality.

F-F isomorphism appears in the limit β →∞.
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q-deformation

When we deform ĝ to Uq(ĝ), the Gaudin model gets deformed to the
XXZ spin chain for g = sl2 and its generalizations.

In the simplest case, the space of states becomes ⊗Ni=1V
q
λi

(zi), where
V q
λi

is a finite-dimensional (level 0) representation of Uq(ĝ). The
parameters zi are now the spectral paramers of these representations.

Commuting quantum Hamiltonians are the transfer-matrices TV (z),

where V ∈ RepUg(ĝ), or more generally, RepUq(b̂+).

The problem is to diagonalize them on ⊗Ni=1V
q
λi

(zi) (or more general
representations of Ug(ĝ)).
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For sl2

Baxter (1972) Elegant reformulation of Bethe Ansatz:

Let T (z) be the transfer-matrix of the 2-dim. rep. of Uq(ŝl2), and let
t(z) be one of its eigenvalues in ⊗Ni=1V

q
λi

(zi).

Consider the q-difference equation (Baxter’s TQ-relation):

(D2 − t(z)D + 1)Q(z) = 0, (D · f)(z) = f(zq2).

Then there is a unique solution Q(z) which is a polynomial (Baxter
polynomial), up to a universal factor that is the same for all
eigenvalues in ⊗Ni=1V

q
λi

(zi). Its roots satisfy the Bethe Ansatz eqs.
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Moreover, all solutions of this second order q-difference equation
(q-oper!) are then polynomials, up to the same universal factor – this
is the q-analogue of the no monodromy condition we have
encountered in Gaudin model.

The TQ-relation is a q-analogue of the Miura transformation
appearing in the formula for the eigenvalues of the Gaudin
Hamiltonians.

There exist analogues of the Baxter TQ-relation for a general Lie
algebra g in terms of the q-characters. (F.-Reshetikhin (1998),
F.-Hernandez (2014)):

There are now ` = rank(g) Baxter polynomials Qi(z), and the
eigenvalues of tV (z) can be written in terms of these Qi(z).
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Beautiful fact: Qi(z)’s are transfer-matrices of special ∞-dim.
representations, which actually satisfy a system of relations among
themselves, called the QQ-system. This system leads to a more
concise description of the spectra of quantum Hamiltonians for Uq(ĝ).

For sl2: the q-Wronskian relation of B-L-Z (1996).

For sln: Bazhanov-Frassek- Lukowski-Meneghelli-Staudacher (2011).

For a general simple Lie algebra g: F.-Hernandez (2016 & to appear).

QQ-system for gl(4|4) plays an important role in N=4 4d SYM (and
AdS5/CFT4 correspondence) – quantum spectral curve of
Gromov-Kazakov-Leurent-Volin (2013).

Moreover, it also appeared in the study of the spectra of affine opers
that appear on the dual side of quantum KdV (Masoero-Raimondo-
Valeri (2015)), which we’ll discuss shortly.
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q-opers

The QQ-system can be described (at least for simply-laced g) in
terms of Miura (G, q)-opers (F.-Koroteev-Sage-Zeitlin (2020))

Closely related work on fused flags by Ekhammar-Shu-Volin (2021)

spectrum of Uq(ĝ)
Hamiltonians

↔ (LG, q)-opers
with Miura structure

This is a q-deformation of the Langlands duality we discussed earlier:

spectrum of g-Gaudin
Hamiltonians

↔
LG-opers

with Miura structure
⇔ no monodromy
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Quantum q-Langlands and string duality

When we turn on both parameters, q and k + h∨, we obtain
quantum q-Langlands duality (Aganagic-F.-Okounkov (2017)):

Origin: Duality in little string theory on an ALE space times a torus,
with non-zero string tension (which corresponds to k + h∨ 6= 0).
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Affine Gaudin models

We now keep q = 1 but replace g by ĝ, so ĝ should be replaced by ̂̂g.

Then Gaudin model  affine Gaudin model (Feigin-F. (2007)).

Classical L-operator of the Gaudin model (with irreg. sing. at ∞):

L =
N∑
i=1

Ai
z − zi

+ χ, Ai ∈ g∗, with fixedχ ∈ g∗

In the affine Gaudin model:

L =
N∑
i=1

∂t + Ai(t)

z − zi
+ χ, ∂t + Ai(t) ∈ ĝ∗1
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Soliton hierarchies

Simplest case: N = 0

L =
∂t + A(t)

z
+ χ ∼ L = ∂t + A(t) + χz

General form of an L-operator an integrable soliton hierarchy!
z – spectral parameter.

χ ∈ h∗  g-AKNS hierarchy

χ = eαmax & Drinfeld-Sokolov reduction  g-KdV hierarchy

g = sl2: L = ∂t −
(

0 v(t) + z
1 0

)
∼ ∂2t − v(t)− z

Likewise, we obtain an integrable system for any number of singular
points in L.
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Quantization

For sl2: Quantum Hamiltonians: local (Feigin-F. (1992)) and
non-local (Bazhanov-Lukyanov-Zamolodchikov (1994))

How to describe their spectra on irreducible reps of Virasoro algebra?

Dorey-Tateo (1998) (special case), B-L-Z (1998, 2003) (in general)
related them to spectral determinants of one-dimesional Schrödinger
operators of a special kind.

This became known as the ODE/IM correspondence that has since
been realized in a large class of models.

Important feature of Schrödinger operators: they have regular
singularities and trivial monodromy!

Feigin-F. (2007) interpreted this as an affine analogue of the
Langlands duality description of the spectra of the Gaudin model.
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Langlands duality for quantum KdV

Recall that for the finite Gaudin model:

spectrum of g-Gaudin
Hamiltonians

↔
LG-opers

with trivial monodromy

Now, for the affine Gaudin model:

spectrum of ĝ-Gaudin
Hamiltonians

↔ affine LĜ-opers
with trivial monodromy

Edward Frenkel (UC Berkeley) Feynman’s Last Blackboard July 25, 2023 39 / 42



40/42

Quantum KdV: Link via the QQ-system

spectra of quantum
ĝ-KdV Hamiltonians

[FH]

''NN
NNN

NNN
NNN

// affine LĜ-opers
no monodromy

oo

[BLZ, MRV, MR]

xxrrr
rrr

rrr
r

solutions of
the QQ-system

[BLZ] Bazhanov-Lukyanov-Zamolodchikov (2003)
[MRV] Masoero-Raimondo-Valeri (2015)
[MR] Masoero-Raimondo (2018)
[FH] F.-Hernandez (2016)
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Affine Gaudin models, Kondo Problem & 4d CS theory

Gaiotto-Lee-Vicedo-Wu (2020) Interpretation of the Kondo problem
in terms of affine Gaudin models.

Kotousov-Lukyanov (2021)

Vicedo (2019) Link between the affine Gaudin models & 4d CS theory.

Costello (2013), Costello-Witten-Yamazaki (2017) 4d Chern-Simons
theory  quantum integrable models (such as XXX model)

Costello-Gaiotto-Yagi (2021) TQ-relation and QQ-system naturally
appear in 4d Chern-Simons theory, where T is a Wilson line operator
and Q is a ’t Hooft line operator.

Kotousov-Lacroix-Teschner (2022) applications of affine Gaudin
models to nonlinear sigma models.
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Open Problems

Find the master algebra of affine Gaudin models (it can be viewed
as an analogue the center of the enveloping algebra of a double
loop algebra at its “critical level”)

Is there a string theory explanation for the affine Gaudin models’
Langlands duality?

Is there a q-deformation of affine Gaudin models, and if so, what
is the corresponding Bethe Ansatz?

Are there applications of “Bethe Ansatz” to realistic 4d gauge
theories like QCD (Richard Feynman’s dream)?
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