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From Sabrina:
This edition of the Strings conference will feature four 
"Challenge" talks designed to alert our community to new 
and promising ideas in adjacent subjects. We would love 
for you to give one of these talks.

From Rob:
We were hoping that you could give us a future looking talk 
on new prospects/directions for quantum information and 
quantum gravity/strings. 



You start with the brane 
And the brane is BPS.

Then you go near the brane 
And the space is AdS.

Who knows what it means?
I don’t, I confess.

Ehhh! Maldacena!

Jeff Harvey

Strings 1998



Entanglement theory

Computational complexity

Error correction



Spacetime emerges from entanglement



The geometrization of quantum 
information in quantum gravity has 
been a fruitful and mysteriously 
successful research direction …

Netta Engelhardt



Boundary = physical qubits

Low-energy bulk = logical qubits



Entanglement = wormhole

Wormhole teleportation



Effective field theory:

Low energy

Low curvature

Low complexity



The nonisometric nature of the code is 
hidden by a veil of computational 
complexity.

Daniel Harlow



Quantum information

More qubits

Higher gate fidelity

New platforms

Programmable quantum simulators

Quantum error correction meets experiment

Applications?



Learning about the quantum world

Curse of dimensionality

Capture essential features with simple classical models

Generalize from data, predict what we’ll see in new 
situations



Useful tasks

Predict properties of chemical compounds and 
materials we haven’t encountered in the lab before.

Recognize when a qualitatively new phase of matter 
(in equilibrium or out of equilibrium) has been 
created. 

Preparing target quantum states using available 
experimental tools. 

Extracting a usable signal from very noisy data.



Learning states, observables, and processes

-- Collect training data

-- Create a (classical) model

-- Predict properties

How much training data do we need, and how hard is it to 
construct and use the model to predict accurately?

What is experimentally feasible, now or in the future?

Huang, Kueng, Preskill 2020; Huang, Kueng, Torlai, Albert, Preskill 2022; 
Huang, Kueng, Preskill 2021; Huang, Chen, Preskill 2022

Huang, Broughton, Cotler, Chen, Li, Mohseni, Neven, Babbush, Kueng, Preskill, McClean 2022
Lewis, Huang,Tran, Lehner, Kueng, Preskill 2023



Learning quantum states

ρ is an arbitrary unknown n-qubit quantum state.

We have access to N identically prepared copies of ρ.

We measure the copies (e.g., randomized, nonadaptive on each copy).

Our goal is to predict tr(𝜌𝑂α) with error ≤ ε for all the observables 
{𝑂α} in a restricted family, with guaranteed success probability ≥ 1- δ.

We might also wish to predict nonlinear functions of ρ, such as Rényi

entropies (expectation of tr(𝜌⊗𝑘𝑂)).



Classical shadows of quantum states

Ensemble of unitary transformations {𝑈𝑖}.

For each copy of ρ, sample random 𝑈𝑖, apply to ρ, measure in standard basis, 
obtain bit string 𝑏𝑖 .

Snapshot: 𝑠𝑖 = 𝑈𝑖
† 𝑏𝑖 .

Unbiased estimator for the unknown state, and for tr(𝜌𝑂α) . What is the 
variance of the estimator, and how likely is a large deviation from the mean? 
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Example: Random Pauli measurement

Measure each qubit in a random Pauli basis: X, Y, or Z.
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where O is a bounded-degree local observable.



Example: Random Pauli measurement

Learn M observables by measuring N copies where …

2

2 weight 2

shadow ,max

( log / )

max 4

N O B M

B O O  



 ‖ ‖ ‖ ‖

2g /lo( )N O n

(Median of means estimation ensures that large deviations are exponentially 
rare.)

Learn all observables of constant weight and constant spectral norm from 
number of copies:

Huang, Kueng, Preskill 2020



“Measure first, ask questions later.”

Elben, Flammia, Huang, Kueng, Preskill, Vermersch, Zoller, 
The randomized measurement toolbox 2022



Local vs. global scrambling

Low depth circuits for predicting local observables.
Example: local Clifford transformations.

Deep circuits for predicting (some) global observables.
Example: global Clifford transformations.

As depth increases, access higher-weight observables.
Example: Chaotic dynamics for a constant time interval.

Hu, Choi, You 2021



What about noise?

The randomized protocol “twirls” the noise.

It becomes a Pauli channel, which can be efficiently characterized.

Include noise in the channel inversion, yielding unbiased estimators.

Sampling error in the Pauli channel characterization contributes to 
variance.

Chen, Yu, Zeng, Flammia 2021 



Learning observables

Learning states: ρ is an arbitrary state, predict expectation for a 
restricted set of input observables.

Learning observables: O is an arbitrary observable, predict its 
expectation for a restricted class of input states, e.g. those drawn from 
a fixed distribution. 

Goal: Learn a function on states that estimates tr(ρO) with a small 
average error. 
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How much training data do we need?



Learning observables

Idea: 

(1) For a smooth distribution on input states, it suffices to learn a 
truncated low-weight approximation to O.

(2) Because of (1), it suffices to know only the low-weight reduced 
density operators of the input ρ (which we can learn efficiently from 
classical shadows).

To achieve average error ε, truncate O to weight k = O(log(1/ε) if the 
input distribution is flat.

N=O(log n) samples suffice, and the computational cost of learning and 
predicting is O(Nnk). Huang, Chen, Preskill 2022



Learning processes

Learn any state, predict bounded-degree local observables.

Learn any observable, predict with small average error over a flat 
distribution of states.

Learn any process, predict expectations of local observables {Oα} in 
output with a small average error over a flat distribution of input 
states. 2

~ ( , ) tr( ( ) ) || h O O    

Learn a low-weight approximation to the unknown observable

Classical shadows of provide the training data, where ρ is a 
product state.

*( )O

( )
Huang, Chen, Preskill 2022



Learning processes

We can efficiently learn the process even if it is exponentially complex.

To do so, it suffices to input only product states, even if the input 
distribution has support on highly entangled states.

We are guaranteed accurate predictions of output local observables, 
not for worst case inputs, but on average and only if the input 
distribution is flat. 



Learning states, observables, and processes

Using classical and quantum machine learning to learn new physics?

For a smoothly parametrized family of gapped local Hamiltonians, train on 
classical shadows of ground states of sampled Hamiltonians, and use classical 
ML for efficient prediction of local properties of other ground states in the 
same phase of matter. 

Classify quantum phases of matter using classical ML by converting states to 
their classical shadows, and learning to classify the shadows. (Efficient if 
reduced density operators for subsystems of constant size suffice for phase 
identification.)

Huang, Kueng, Preskill 2020; Huang, Kueng, Torlai, Albert, Preskill 2022; 
Lewis, Huang,Tran, Lehner, Kueng, Preskill 2023



Quantum gravity: how experiments might help

Probe bulk geometry by measuring boundary entanglement
structure. 

Probe bulk locality, e.g. by studying boundary linear response. 

Probe fast scrambling, Lyapunov spectrum.

Measure higher-order quantum gravity corrections. 

Simulate very-high-energy bulk scattering.

Holographic dictionaries beyond anti-de Sitter.

Use gravitational intuition to understand emergent phenomena.



QG = QM


