The future of the S-matrix

Discussion session @ Strings 2023

Simon Caron-Huot

Sebastian Mizera

The S-matrix is a general tool. I'll only mention recent progress on two gravity-related questions.

- 1. Can gravity be modified only in the IR?
 - Massive gravity does not exist! 2->2 amplitude of massive spin-2s needs low cutoff $\Lambda \leq O(10)m$. Contrast with fixed-angle $\Lambda \lesssim (m^2 M_{\rm pl})^{1/3}$. [Bellazzini, Isabella, Ricossa& Riva '23]

- Framework: $2 \rightarrow 2$ Causality+Unitarity \Rightarrow sum rules: $G_N, \mathcal{M}_{IR} \propto \sum |c_{gg \rightarrow heavy}|^2$ heavy

The S-matrix is a general tool. I'll only mention recent progress on two gravity-related questions.

- 1. Can gravity be modified only in the IR?
 - Massive gravity does not exist! 2->2 amplitude of massive spin-2s needs low cutoff $\Lambda \leq O(10)m$. Contrast with fixed-angle $\Lambda \lesssim (m^2 M_{\rm pl})^{1/3}$. [Bellazzini, Isabella, Ricossa& Riva '23]
 - Continuous-spin particles: coupling to matter behaves at $E > \rho_{IR}$ like higher-spin tower with Stueckelberg-like decoupling.

- Framework: $2 \rightarrow 2$ Causality+Unitarity \Rightarrow sum rules: $G_N, \mathcal{M}_{IR} \propto \sum |c_{gg \rightarrow heavy}|^2$ heavy

[Schuster, Toro& Zhou '23]

2. What happens at Λ_{OG} ?

a.k.a. "the species scale" "the scale min(string, Planck_D)" "the higher-spin mass" "the scale where local EFT breaks down irrevocably"

IR modification of GR $\mathscr{L} = \frac{1}{16\pi G} \left(R + g_3 \text{Riem}^3 + \dots \right)$

exists elementary* spin-4 particle(s) with $M^4 |g_3| \le \#_d$

[SCH, Li, Parra-Martinez& Simons-Duffin' 22] *couples to two gravitons with $\sqrt{G_N}$ strength

2. What happens at Λ_{OG} ?

a.k.a. "the species scale" "the scale min(string, Planck_D)" "the higher-spin mass" "the scale where local EFT breaks down irrevocably"

IR modification of GR $\mathscr{L} = \frac{1}{16\pi G} \left(R + g_3 \text{Riem}^3 + \dots \right)$

exists elementary* spin-4 particle(s) with $M^4 |g_3| \le \#_d$

Does a single irrevocable particle doom spacetime?

[SCH, Li, Parra-Martinez& Simons-Duffin' 22] *couples to two gravitons with $\sqrt{G_N}$ strength

Scattering amplitudes continue to be an exciting and fast-growing field, with applications ranging from LHC to LIGO physics

We'd really like to encourage the **audience** to participate in this discussion about open problems and challenges

Chaos AdS D-instantons Number theory Explicit evaluation Excited states

Chaos AdS D-instantons Number theory Explicit evaluation Excited states

• Understanding confinement

S-matrix bootstrap Analyticity in hadron physics

Number theory Explicit evaluation Excited states AdS Chaos D-instantons

Understanding confinement

S-matrix bootstrap Analyticity in hadron physics

• Scattering in different backgrounds

Cosmological bootstrap $(A)dS \leftrightarrow$ flat-space amplitudes

Chaos AdS D-instantons Number theory Explicit evaluation Ex

Excited states

• Understanding confinement

S-matrix bootstrap Analyticity in hadron physics

• Scattering in different backgrounds

Cosmological bootstrap (A)dS \leftrightarrow flat-space amplitudes

• Precision measurements: Need for new representations of amplitudes Pentagon functions Prescriptive unitarity Hamiltonian truncation

Chaos AdS D-instantons Number theory Explicit evaluation Ex

Excited states

• Understanding confinement

S-matrix bootstrap Analyticity in hadron physics

• Scattering in different backgrounds

Cosmological bootstrap $(A)dS \leftrightarrow$ flat-space amplitudes

- Precision measurements: Need for new representations of amplitudes Pentagon functions Prescriptive unitarity Hamiltonian truncation
- Eliminating the main bottleneck in all amplitude computations:

Chaos AdS D-instantons Number theory Explicit evaluation Ex

Excited states

• Understanding confinement

S-matrix bootstrap Analyticity in hadron physics

• Scattering in different backgrounds

Cosmological bootstrap (A)dS \leftrightarrow flat-space amplitudes

- Precision measurements: Need for new representations of amplitudes Pentagon functions Prescriptive unitarity Hamiltonian truncation
- Eliminating the main bottleneck in all amplitude computations: humans Numerical Symbolic (attention, seq2seq, Lean, ...)