Life on the Lattice

Nathan Seiberg, IAS

Simons Collaboration on

Global Categorical Symmetries

Simons Collaboration on

Ultra-Quantum Matter

Lattice vs. continuum QFT

QFT is enormously successful. Yet, it is not mathematically rigorous.
One approach is to regularize it by placing it on a lattice.

- Then, the problem is well defined.
- Continuum limit: introduce a lattice spacing a, take $a \rightarrow 0$ and the number of sites to infinity holding the physical lengths fixed - correlation functions at fixed positions $x>a \rightarrow 0$.
- Allows numerical calculations.

In condensed matter physics, the problem is defined on a (spatial or spacetime) lattice and the goal is to find the low-energy/long-distance limit.

- It is expected to be described by an effective continuum QFT.

From the continuum to the lattice - challenges

- Some continuum theories depend on the topology of field space, which relies on continuity. How is this captured by the lattice theory?

This issue affects

- Various terms in the action (e.g., θ-terms, Chern-Simons terms, Wess-Zumino terms, ...)
- Some global symmetries (e.g., winding symmetries, higherform symmetries, non-invertible symmetries, ...)
- Anomalies
- Some QFTs (e.g., theories with self-dual forms or fermions) do not admit a suitable continuum Lorentz invariant action, and others (e.g., the 6d $(2,0)$ theory) do not even have a continuum Lagrangian at all. Not clear how to place them on the lattice.

From the lattice to the continuum - challenges

- What is the low-energy limit?
- What are the possible phases and the transitions between them?
- Which phases are connected?
- Symmetries, anomalies
- More criteria?
- Does the continuum limit exist? Does it depend on the microscopic details?
- Do all lattice models lead at long distances to a continuum QFT?

This is particularly puzzling for various exotic models (e.g., fractons)

- UV/IR mixing - long-distance phenomena depend on shortdistance details. (Reminiscent of quantum gravity and some string theory constructions.)

No conclusions

Thank you

