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Bekenstein-Hawking formula for black hole entropy is universal

S0 =
A
4

in ~ = c = GN = kB = 1 unit

A: area of the event horizon

In Einstein-Maxwell theory or (extended) supergravity in D
dimensions, the black hole can carry

– U(1) charges Qk

– angular momentum Ji in Cartan subalgebra of SO(D-1)

– mass M

Then
S0 = f0(Q,M,J)

Q, J have multiple components in general 2



Scaling property of the entropy in D dimensions

f0(λ
D−3Q, λD−3M, λD−2J) = λD−2 f0(Q,M,J)

To take macroscopic limit, we take

M ∼ λD−3, Q ∼ λD−3, J ∼ λD−2

and take λ large

Then
S0 ∼ λD−2

In this limit the fields associated with the black hole also has
simple dependence on λ, e.g.

gµν ∼ λ2

Note: In D=4 we can also have magnetic charges scaling as λ,
but they are topological and will not play any role in this analysis
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The Bekenstein-Hawking formula is expected to receive
corrections due to stringy effects and quantum effects

General structure:

S = λD−2 f0 + power suppressed terms + C (lnλ) + · · ·

Focus of attention in today’s lecture will be the terms ∝ lnλ 4



General procedure for computing corrections to the black hole
entropy (Gibbons-Hawking)

1. Perform a path integral over all fields subject to the same
boundary condition that the black hole satisfies

– gives partition function containing lnλ corrections
Fursaev, Solodukhin, · · · , Review: arXiv:1104.3712 by Solodukhin

2. Construct the entropy from the partition function using the
usual rules of statistical mechanics

e.g. for asymptotically flat black holes, the gravitational path
integral gives grand canonical partition function

– need to take appropriate Laplace transform to get the
microcanonical entropy

Can also generate logarithmic corrections to the entropy
A.S.: arXiv:1205.0971
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Example: Result for Kerr black hole in pure gravity in D=4(
212
45
− 1
)

lnλ

Any quantum theory of gravity that can count black hole
microstates should reproduce this result.

At present such a counting is not possible in string theory.

This can be remedied using supersymmetric black holes. 6



Supersymmetric (extremal) black holes have zero temperature

⇒ instead of having a single large length scale, we have two
different large scales

M, Q ∼ λD−3 and β ≡ ∂S
∂M →∞

– difficult to extract log correction

Remedy: Work in the near horizon geometry:

AdS2 × (squashed)SD−2 Mann, Solodukhin hep-th/9604118; · · ·

ds2 = v1

(
dr2

r2 − 1
+ (r2 − 1)dτ2

)
+ v2 ds2

D−2

v1,v2 ∼ λ2

We can compute logarithmic correction to the partition function
in this geometry following the same guidelines 7



Some differences:

1. The partition function computes the path integral at fixed
mass, charge and angular momentum since these modes
dominate as r→∞

⇒ the path integral directly computes the entropy in the
microcanonical ensemble and no change of ensemble is needed.

2. We integrate over modes living in the near horizon geometry

– different set of eigenvalues and eigenfunctions than those in
the full geometry 8



Final result in theories with N ≥ 2 supersymmetry in D=4:

S = S0 +
1
6
(23 + nH − nV) lnλ for N=2

nH,nV: number of vector and hypermultiplets

S = S0 for N=4

S = S0 − 8 lnλ for N=8

Banerjee, Gupta, A.S. arXiv:1005.3044, Banerjee, Gupta, Mandal, A.S. arXiv:1106.0080

A.S. arXiv:1108.3842

The results are in perfect agreement with microscopic counting
formula for N=4 CHL type compatifications and N=8
compactifications

Maldacena, Moore, Strominger hep-th/9903163; Dijkgraaf, Verlinde, Verlinde hep-th/9607026;

David, A.S. hep-th/0605210; David, Jatkar, A.S. hep-th/0609109

Similar agreement also holds in D=5 A.S. arXiv:1109.3706

No microscopic counting exists for black holes in N=2 theories 9



Recent developments
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Iliesiu, Kologlu and Turiaci described a procedure for computing
supersymmetric index using full black hole geometry

Iliesiu, Kologlu, Turiaci arXiv:2107.09062

Our goal will be to use this formalism to compute logarithmic
correction to the black hole entropy 11



Supersymmetric index:

I = TrQ,J′,k=0
[
e−βH(−1)F(2J0)

n]
J0 some particular Cartan generator, k: momentum

J′ represents Cartan generators other than J0

The trace is taken over states at fixed Q, J′ and k=0

The trace gets contribution from only those states that break 2n
(or less) J′-invariant supersymmetries

A generic non-BPS state will break all (> 2n) supersymmetries
and will not contribute to this index for sufficiently small n

This index is expected to pick up the degeneracy of the
supersymmetric states with fixed Q,J′,k = 0

Bachas, Kiritsis hep-th/9611205; Gregori, Kiritsis, Kounnas, Obers, Petropoulos, Pioline hep-th/9708062
Dabholkar, Gomes, Murthy, A.S.
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I = TrQ,J′,k=0
[
e−βH(−1)F(2J0)

n] ≡ eSBPS−βMBPS

Examples:

1. In D=4 the rotation group is SU(2)

J0 is the third generator of the rotation group, J′ trivial

The corresponding microscopic index is counted in N = 4,8
supersymmetric theories

2. In D=5 the rotation group is SO(4) = SU(2)L × SU(2)R

We can take J0 = J3R, J′ = J3L

Index is a function of J3L and electric charges

– counted in N=2, 4 supersymmetric compactifications (BMPV
black holes) 13



Index from gravitational path integral

Euclidean continuation of a black hole leads to a conical
singularity at the horizon, unless

1. The euclidean time τ and the azimuthal angles φ are
periodically identified as

(τ, φ) ≡ (τ + β, φ− iωβ)

2. The time components of the gauge fields take asymptotic
values

Aτ = −iµ

β, ω, µ are fixed in terms of M,Q,J for classical black hole

Interpretation: Gibbons, Hawking

β = ∂S0
∂M =inverse temperature, ω = 1

β
∂S0
∂J =angular velocity

µ = 1
β
∂S0
∂Q =chemical potential 14



Scaling from S0 ∼ λD−2, M,Q ∼ λD−3, J ∼ λD−3

β ∼ ∂S0

∂M
∼ λ, µ ∼ 1

β

∂S0

∂Q
∼ 1, ω ∼ 1

β

∂S0

∂J
∼ λ−1

In quantum theory we treat β, ω, µ as independent variables,
providing boundary condition to the path integral

The gravitational path integral with these boundary conditions
gives the grand canonical partition function:

Z = Tr
[
e−βE−βµ.Q−βω.J

]
15



Consider the gravitational partition function in full space-time
geometry with βω0 = 2πi and (2J0)

n inserted

Z = Tr
[
e−βH−µQ−βω′.J′−2πiJ0(2J0)

n
]
= Tr

[
e−βH−µQ−βω′.J′(−1)F(2J0)

n
]

Compare this with the index

I = eSBPS−βMBPS = TrQ,J′,k=0
[
e−βH(−1)F(2J0)

n]
In both we sum over J0,M

In the index I we take the trace for fixed Q, k=0, J′ while in Z we
sum / integrate over Q, k, J′ keeping µ, ω′ fixed

Z can be regarded as a sum / integral over Q, k, J′ with I as
integrand 16



Z =

∫
dnvQ dn′cJ′ dnTk e

[
SBPS−βMBPS−βk2/2M−βω′.J′−βµ.Q

]

k: momenta invariant under ω′.J′

⇒ an nT dimensional space of momenta to integrate over

n′c: number of generators J′

nv: number of U(1) gauge fields, i.e. dimension of Q

The contribution to the integral is dominated by the Euclidean
black hole saddle point

Gaussian integral around the saddle point produces correction
∝ lnλ

e.g. k integration gives ∼ (M/β)nT/2 ∼ e
nT
2 (D−4) lnλ

Q, J′ integrals give
(

det∂
2SBPS
∂Q2

)−1/2 (
det∂

2SBPS
∂J′2

)−1/2
∼ λ

nv(D−4)+n′c(D−2)
2

17



Net result:

SBPS = ln Z + βMBPS + βω′.J′ + βµ.Q + CE lnλ

with J′, Q evaluated at the saddle, and

CE = −1
2
[(nv + nT)(D− 4) + n′c(D− 2)]

n′c: number of generators J′

nv: number of U(1) gauge fields, i.e. dimension of Q 18



We now need to evaluate the logarithmic correction to ln Z by
evaluating the gravitational path integral

Power counting⇒ such contributions come from one loop
contribution of massless fields 19



Kb: Kinetic operator for massless bosonic fields

Kf: Kinetic operator for massless fermionic fields

One loop contribution to Z from massless fields:

(det Kb)
−1/2(det Kf)

1/2

Correction to ln Z:

δln Z = −1
2

ln det Kb +
1
2

ln det Kf = −
1
2

Tr ln Kb +
1
2

Tr ln Kf

λ dependence arises from Kb ∼ λ−2, Kf ∼ λ−1

– can be evaluated using the heat kernel expansion
Seeley; DeWitt; · · · Vassilevich, hep-th/0306138
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Result
δ ln Z = CLlnλ+ · · ·

CL =

∫
d4x K(x)

K(x) can be computed from the knowledge of Kb and Kf

In N ≥ 2 supergravity in D=4, K(x) is proportional to the
Gauss-Bonnet term Charles, Larsen arXiv:1505.01156; Karan, Panda arXiv:2012.12227

⇒ CL ∝ Euler number

For D odd, CL = 0 21



Zero mode contribution:

Kb and / or Kf may have zero eigenvalues arising from broken
symmetries like translation, rotation, supersymmetry

– cannot be treated as part of the determinant

1. Remove their contribution from δ ln Z

e.g. a bosonic mode contributes (1/λ2)−1/2 ∼ λ to Z

⇒ lnλ to ln Z

We need to subtract (ln λ) from δln Z for each bosonic zero mode

Similarly we add (ln λ)/2 to δln Z for each fermionic zero mode 22



Example: Counting of the number of rotational zero modes nR

– must be generated by rotation outside the Cartan subalgebra
of the group so that it deforms the solution

– must be invariant under eβω
′.J′ so that it satisfies the required

periodicity as we go around the euclidean time circle.

In D=4 these are rotations about 1 and 2 axis in SU(2) and in D=5
these are rotations about 1 and 2 axes of SU(2)R

⇒ in both D=4 and D=5, nR = 2

Similar analysis can be done for counting the translational zero
modes and broken supersymmetry zero modes. 23



2. We need to find the actual λ dependent contribution to Z from
the zero mode integrals

Zero modes typically arise from some broken symmetries

We express the integral over the zero modes as integral over the
broken symmetry parameters and carry out the integral

Fermion zero modes are associated with broken supersymmetry

– saturated by the zero mode part of (2J3)
n

The original integration measure, jacobian for the change of
variables and the integral over the symmetry transformation
parameters can also give ln λ. 24



Net logarithmic correction from zero modes

CZ lnλ, CZ ≡
1
2

nT (D− 4) +
1
2

nR (D− 2)

Net logarithmic correction to SBPS:

(CE + CL + CZ) lnλ =

[
1
2
{(nR−n′c)(D− 2)−nV(D− 4) + CL

]
lnλ

CL =

∫
Full geometry

K(x)

n′c = 0,1 in D=4,5, CL = 0 in D=5, nR = 2 in D=4,5. 25



Final result: Logarithmic correction to the index, computed from
the near horizon geometry and the full geometry give the same
result· · ·

· · · even though the intermediate steps are quite different

⇒ the index computed from the full geometry correctly
reproduces the microscopic results when they are known

e.g. in theories with 16, 32 supersymmetries in D=4, 5 26



Conclusion

27



Although this analysis has only reproduced known results, the
agreement is significant due to several reasons:

1. The computation using the full geometry uses integration
over the same set of modes and same ensemble as that for
non-supersymmetric black holes

– gives us confidence in the results for non-supersymmetric
black holes for which there is no independent test of the formula

2. In principle, the computation using the full geometry can be
used to take into account all configurations that contribute to
the index

e.g. multi-centered black holes

3. This formalism may be better suited for exact computation of
supersymmetric index from gravitational path integral, e.g. via
localization 28


