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This talk is an overview of some joint work (past, present,
and future) with numerous collaborators.

Here is an incomplete list:

Ilka Brunner, Martin Cederwall, Kevin Costello, Tudor
Dimofte, Richard Eager, Chris Elliott, Owen Gwilliam,
Fabian Hahner, John Huerta, Simon Jonsson, Simone Noja,
Jakob Palmkvist, Natalie Paquette, Surya Raghavendran,
Johannes Walcher, Brian R. Williams.

I owe thanks to all of them, and to the many other people
I’ve been fortunate enough to talk with and learn from
(some of whom are in the audience).



I’d like to give an overview of the program that has
emerged out of these collaborations: its tools and aims; its
successes so far; and its future directions.

To sum up this program, and to serve as a frame for the
lecture, here is a list of slogans:

1 – Superspace geometry is like almost-complex geometry.
2 – Theories are like their twists.
3 – Symmetries and deformations belong together.
4 – Higher-dimensional current algebras are worth

thinking about.

Going in order, I will try and convey what I mean by each of
these four cryptic phrases, and (in particular) what I mean
by the word “like.”



At the end of the day, I’d like to arrive at the following
result, which is an illustrative special case:

1 – From the geometry of N = (2,0) superspace, one
obtains a six-dimensional current algebra closely
related to the conformal supergravity multiplet.

2 – The corresponding chiral algebra consists of Virasoro
(or W2) currents. The holomorphic twist gives the
currents of the exceptional super Lie algebra E(3|6).

3 – It governs both superconformal symmetry and moduli.
4 – Working perturbatively at the holomorphic level, the

reduction of this object to five dimensions agrees with
sl(2) maximal super Yang–Mills theory.

Very concrete progress towards the physics of fivebranes!



1 – Superspace geometry

As we all know, superspace is characterized by the algebra
of functions on it. I have the usual commuting spacetime
coordinates xµ, but also fermionic coordinates θa.

Usually, the coordinates θa parameterize one or more odd
copies of spin bundles on the underlying spacetime. (Here,
a is a collective index.)

Importantly, though, a superspace X is equipped with one
additional geometric structure: a non-integrable odd
distribution of maximal dimension, encoding local
supersymmetry transformations.

This idea goes back, at least, to Yuri Manin.



On flat space, this amounts to specifying the
supercovariant derivatives, given by the usual formulas

Qa = ∂

∂θa +γµabθ
b ∂

∂xµ
, Da = ∂

∂θa −γµabθ
b ∂

∂xµ
,

when acting on the left and on the right respectively.

In the literature, one finds the statement that “flat
superspace has torsion:” Since they do not commute, the
covariant derivatives cannot be a coordinate basis in any
coordinate system on superspace.



An almost-complex structure is defined by precisely the
same kind of data: a distribution

T ⊂TC

in the (complexified) tangent bundle. The structure is
integrable precisely when its “torsion” vanishes.

So any structure in almost-complex geometry that I can
define using that data has an analogue in superspace.

A very similar perspective was taken by Berkovits and Howe. See also the work of Tanaka.



If I want to study a complex manifold, I shouldn’t think
about the smooth functions. Its structure is better captured
by the algebra of holomorphic functions.

How can I recover that algebra from the geometric data we
have to work with?

Here is one recipe:
• Consider the differential forms Ω•(X).
• Give them a “weight grading”: |dz| = −1, |dz| = 0.
• The differential decomposes into weighted pieces:

d= ∂+∂.

• The weight-zero piece of the differential is ∂.
• In weight −k, I recover the (k,•)-forms.



This doesn’t quite work when the complex structure is not
integrable. However, there is a good generalization in the
almost complex case, due to Cirici and Wilson.

Their insight is simple to describe. In the almost complex
case, the de Rham differential decomposes as

d= γ+∂+∂+γ,

where γ is the Nijenhuis tensor.

While ∂ is no longer a square-zero differential, γ is. And ∂

squares to zero up to γ-exact terms. So we should think of
the Dolbeault operator, not as a square-zero differential on
the graded algebra Ω•, but on the differential graded
algebra (Ω•,γ).



Based on our analogy, we should try and understand
superspace by following this recipe and constructing
appropriate analogues of “holomorphic objects” on it.

In particular:
• What is the algebra of “holomorphic” functions?
• What are “holomorphic” vector fields?

The latter object will govern symmetries and deformations,
in similar fashion to Kodaira–Spencer theory.

So now we can just watch what happens. . .

From this point forward, I will often leave the scare quotes implicit.



The de Rham forms on flat superspace are generated by
coordinates xµ,θa and one-forms dxµ,dθa. But we need to
work with respect to the left-invariant frame

λa = dθa, vµ = dxµ+θaγ
µ

abdθb.

In this basis, the de Rham differential becomes

d=λaλbγ
µ

ab
d

dvµ
+λa

(
d

dθa −γµabθ
b d

dxµ

)
+vµ

d
dxµ

.

λ has weight 0, and v weight −1. Thus, in our analogy,

γ=λaλbγ
µ

ab
d

dvµ
, ∂=λa

(
d

dθa −γµabθ
b d

dxµ

)
, ∂= vµ

d
dxµ

.

∂ squares to zero up to the “pure spinor constraint”
λaγ

µ

abλ
b = 0, which is imposed by the differential γ.

Berkovits, Cederwall, Howe, Nilsson, . . .



The multiplet A• of “holomorphic” functions:

Superspace Structure sheaf On-shell? dimC CY?
3d N = 1 vector 1
4d N = 1 vector 2
6d N = (1,0) vector 3
6d N = (2,0) abelian tensor X∗ 1
P1 ×P2 T X∗ 1
10d N = (1,0) vector X 5 X†

10d N = (2,0) supergravity (IIB) X∗ 1
∧2(T)⊕T∗ min. BCOV X∗ 1
11d N = 1 supergravity X 2 X
Gr(2,5) E(5|10) X 2 X

The star refers to presymplectic on-shell (BV) theories, which include self-dual fields. The
dagger refers to a subtlety that will not be important here (“Gorenstein, but not maximally
Cohen–Macaulay.”)



Here, the “complex dimension” is the largest k such that
the sheaf of “holomorphic k-forms” is nontrivial, and a
“Calabi–Yau structure” is a trivialization of the sheaf of
holomorphic top forms, making A• a Calabi–Yau k-algebra.

Why those particular non-standard examples?

The construction outlined applies to any choice of an
appropriate superspace—indeed, the only input is the
structure constants γµab of the supertranslation algebra.
But nothing says these have to be of any standard form.

It’s useful to set things up in this generality. As I will now
explain, the nonstandard examples above govern the twists
of N = (2,0) supersymmetry, eleven-dimensional
supersymmetry, and type IIB, respectively.



2 – Theories and their twists

The key point can be put as follows: On flat superspace,
twisting is the odd version of dimensional reduction. In a
precise sense, the theory and its twists have the same
structure.

After all, dimensional reduction takes invariants of a vector
field generating an even translation. Twisting takes
invariants of a supercharge; in a superfield formalism, this
is just a vector field generating an odd translation.

From this perspective, it’s not surprising that superfield
formulations or actions do not change dramatically under
twisting. (When I dimensionally reduce, I write the same
action functional, restricted to a smaller space of fields.)



One rigorous formulation of this point is the following:

Theorem (IAS–Williams)
The construction outlined above commutes with twisting. In
particular, the twist of A• by a square-zero supercharge Q is
obtained by applying A• to the algebra of residual
supertranslations in the desired twist.

As a corollary, the holomorphic twist of the type IIB
supergravity multiplet is (free) minimal BCOV theory, as
conjectured by Costello–Li.

Because of the computational efficiency of the formalism,
checking this—which would be deeply unwieldy in
components—becomes a task you can do in five minutes.
And it’s not just about free theories. . .

This statement is true up to taking potentials for various field strengths in BCOV.



• Baulieu: Holomorphically twisted ten-dimensional
super Yang–Mills theory is holomorphic
Chern–Simons theory on C5.

• Berkovits; Schwarz; Witten: Ten-dimensional super
Yang–Mills theory is holomorphic Chern–Simons
theory on superspace.

• Costello: Maximally twisted eleven-dimensional
supergravity should be Poisson–Chern–Simons theory
on C2 ×R7.

• Raghavendran–IAS–Williams: Holomorphically
twisted eleven-dimensional supergravity on C5 ×R
should be the exceptional Lie superalgebra E(5|10).

• Cederwall; Hahner–IAS: Untwisted eleven-dimensional
supergravity is Poisson–Chern–Simons theory on
superspace. So is E(5|10).



While it’s great to interpret well-known theories in terms of
superspace geometry, I want to emphasize that these tools
are useful beyond an interpretational level. Sometimes new
structures become apparent. And sometimes one knows
more about a twisted theory than its untwisted parent. . .

As an example of the first kind, notice that this formulation
of eleven-dimensional supergravity gives the fields a
2-shifted Poisson algebra structure. This is roughly the
same as an E3 structure—which is precisely what one
would expect if it arose from a first-quantized description
via a three-dimensional theory.

(This is analogous to the 1-shifted bracket of
Lian–Zuckerman and Getzler in string theory, or the BV
algebra structure on polyvector fields in the B-model.)

Beem–Ben-Zvi–Bullimore–Dimofte–Neitzke, Elliott–Williams, . . .



As an example of the second kind: N = (2,0) theories in six
dimensions admit two twists. It is expected that the
nonminimal twist of the sl(n) theory is the Wn algebra.

Beem, Rastelli, and van Rees showed that twisting
N = (2,0) theories by a particular superconformal element
of type Q+S produces chiral algebras, and conjectured that
these are W-currents.

They write: “the structure of the computable correlators
may hold some clues about the right language with which to
describe (2,0) SCFTs more generally.”

By work of Oh–Yagi and Jeong, one expects a relation to
the nonminimal twist; further strong evidence is given by
Costello’s description in the context of twisted holography
in the omega background.

Alday–Gaiotto–Tachikawa, Gaiotto, . . .



3 – Superspace symmetries and deformations

We know that the object that controls symmetries and
deformations of a complex manifold is the sheaf of
holomorphic vector fields. (This is normal Kodaira–Spencer
theory: H1(T) corresponds to Beltrami differentials.)

To understand deformations of superspace, we should think
about “holomorphic” vector fields—in other words,
derivations of A•. Again, this object can be computed
straightforwardly.

Either amazingly or unsurprisingly, this produces the
conformal supergravity multiplet, in any dimension and
with any amount of supersymmetry.

Innumerable angles: Ogievetsky–Sokatchev, Wess–Zumino, Schwarz, Cremmer–Ferrara,
Santi–Spiro, Figueroa-o’Farrill–Santi, d’Auria–Fré, generalized geometry. . .



For untwisted N = (2,0) supersymmetry, here is the result:

0 : Vect ΠS+(R) Ω0(adR)

1 : Met0 ΠRS(R) Ω1(adR)⊕Ω3+(5) ΠS−(16) Ω0(14).

And here it is for holomorphic N = (2,0) supersymmetry:

0 : Vecthol Ω1
hol ⊗ΠR′ Ω0

hol(adR′).

The first of these, L(2,0), is a derived version of the
conformal supergravity multiplet of Bergshoeff, Sezgin, and
van Proeyen. The second is the exceptional simple Lie
superalgebra E(3|6) constructed by Kac.



4 – Higher current algebras

We just constructed a family of local L∞ algebras that
encode the symmetries and deformations of superspace.
These naturally couple to any superconformal theory.

Costello and Gwilliam worked out a powerful
generalization of Noether’s theorem for any local L∞
algebra L . They construct a P0 factorization algebra of
currents, which I will call Cur(L ). To a field theory T with
a symmetry by L , they then associate a map of P0
factorization algebras

Cur(L )→Obs(T).

(It is worth remarking that this works, in particular, for
any infinitesimal higher-form symmetry.) There is a
quantum version as well, but I will work semiclassically.



One should think about these constructions as analogous to
typical computations in two-dimensional field theory, where
current algebras are ubiquitous. While they are not defined
by least-action principles, they have perfectly well-defined
OPE structures.

The difference is analogous to that between a standard
(symplectic) phase space and a Poisson manifold. Both have
algebras of functions that admit deformation quantizations.

When we ask for a Hamiltonian group action on M, we ask
for a moment map g→C∞(M). This extends to a map from
polynomials in g to functions on M, which I can think of as
a Poisson map from M to g∨.

So I can think of g∨ itself as a degenerate
(“non-Lagrangian”) phase space. . . .

Moyal, Weyl, Kontsevich; Kirillov, Kostant, Souriau; . . .



At this point, I hope it is clear that we have constructed a
semiclassical object with N = (2,0) superconformal
symmetry, which is not described by a least-action problem.

This object is just
Cur(L(2,0)) :

the current algebra of the moduli problem of deformations
of (2,0) superspace.

By analogy: “W2 is the current algebra of the moduli
problem of deformations of a complex curve.”



Thanks to the general results above, many consistency
checks are automatic. For example, the associated chiral
algebra in the nonminimal twist is W2, or Virasoro
currents—without doing any computations at all.

Similarly, the holomorphic version, describing the
dynamics of 1/16 BPS operators, is Cur(E(3|6)).

But the connection to 5d super Yang–Mills theory is not
automatic. I will check this at the holomorphic level by
matching the dimensional reduction of E(3|6) currents to
the perturbative holomorphic twist of the sl(2) theory.

There is a subtlety related to the central extension; I will comment on this later.



After dimensionally reducing, we obtain a local L∞ algebra
of the form

L red
(2,0) :

Vecthol Ω1
hol ⊗ΠR′ Ω0

hol(adR′).

Ω0
hol ·∂w (Ω0

hol ·dw)⊗ΠR′

(Xµ,x) (ψa
µ,ξa) ρab

Inside of Cur(L red
(2,0)), these generators are shifted down by

one. But we need to take compactly supported sections,
meaning that the nontrivial generators in cohomology are
overall in degree +2.



Perturbative holomorphic super Yang–Mills theory with
g= su(2) is also described (in BV) by a local L∞ algebra of
the form

E :
Ω0

hol ⊗g Ω0
hol ⊗ΠR′⊗K1/2 Ω3

hol ⊗g.

α φa β

Overall, α and β are observables of odd parity, and the φa

are of even parity. Each observable has degree +1. su(2)
has only one quadratic Casimir invariant, so the
gauge-invariant observables (at lowest order in
holomorphic derivatives) are generated by quadratic
expressions in β, φa, and the holomorphic derivatives of α.



The map can be written down very explicitly:

ρab 7→ tr
(
φaφb

)
,

ξa 7→ tr
(
φaβ

)
, ψa

µ 7→ tr
(
φa∂µα

)
,

Xµ 7→ tr
(
β∨∂µα

)
, x 7→ tr(∂1α∂2α).

At a hand-waving level, and ignoring the central extension,
one can already see how the relevant components of the
Poisson brackets match up (recalling that α is conjugate to
β and φ1 to φ2).

More properly, one might frame this as a map from L red
(2,0) to

(shifted) local functionals in holomorphic Yang–Mills.

At an intuitive level: compare to Drinfeld–Sokolov, Feigin–Frenkel. . .



To fully work out the structure of this algebra, one needs to
understand possible central extensions of L(2,0). One
expects a unique local central extension, closely connected
to the superconformal invariant studied in the literature.
(In progress with Williams.)

We expect to construct higher-rank examples as higher
analogues of Wn algebras. W∞ is understood: at the
semiclassical level, it is eleven-dimensional supergravity!
The superspace description of higher-spin generators is
also understood. (To appear with Hahner, Raghavendran,
and Williams.)

Building on intuitions from twisted holography, we expect
to recover analogues of the Gelfand–Dickey Poisson bracket
in this higher setting. (In progress with Raghavendran and
Williams.)

Butter–Novak–Tartaglino-Mazzucchelli; Raghavendran–Williams; IAS–Williams



Many open questions and future directions. Here are a few:

• There should be a higher analogue of the Miura
transform which constructs a map from higher Wn
currents to the observables of n abelian tensor
multiplets; useful for tensor branch physics? (I thank
Procházka and Rapčák for conversations about this.)

• Can I learn more about first-quantized applications of
pure spinor techniques from this perspective?
(Ongoing work with Huerta.)

• Is there an E3 algebra whose factorization homology
on the two-sphere reproduces the 2-shifted Poisson
structure of eleven-dimensional supergravity?

• What is an oper on Spec A•?



Thanks for your attention!
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