Black hole cohomologies in $\mathcal{N}=4$ Yang-Mills

Seok Kim

(Seoul National University)

Strings 2023
Perimeter Institute for Theoretical Physics

July 25, 2023

Talk based on collaborations with

- Sunjin Choi (KIAS)
- Eunwoo Lee (Seoul National Univ.)
- Siyul Lee (Univ. of Michigan)
- Jaemo Park (Postech)
"The shape of non-graviton operators for SU(2)" arXiv:2209.12696.
"Towards quantum black hole microstates" arXiv.2304.10155.

See also:

- Chi-Ming Chang, Ying-Hsuan Lin,
"Words to describe a black hole" arXiv:2209.06728.
- Budzik, Gaiotto, Kulp, Williams, Wu, Yu,
"Semi-chiral operators in 4d N=1 gauge theories" arXiv:2306.01039.
- Chang, Feng, Lin, Tao,
"Decoding stringy near-supersymmetric black holes" arXiv:2306.04673.
- Budzik, Murali, Vieira,
"Following black hole states" arXiv:2306.04693.

The problem \& motivations

The problem: 1/16-BPS states in 4d maximal SYM w/ SU(N) gauge group

- Among $16 Q+16 S$ supercharges, pick a pair $Q \& S=Q^{\dagger}$ that the BPS states preserve.
- BPS states saturate the bound: $\left\{Q, Q^{\dagger}\right\} \sim E-\left(R_{1}+R_{2}+R_{3}+J_{1}+J_{2}\right) \geq 0$
- Nilpotency $Q^{2}=0$: BPS states \sim harmonic forms $\stackrel{1 \text { to } 1}{\longleftrightarrow}$ Q-cohomology classes.
- We shall find \& discuss the representatives of new cohomology classes.

Motivations:

- \quad Special case of $1 / 4$-BPS states in $N=1$ QFT: Information on SUSY dynamics [Budzik, Gaiotto, Kulp, Williams, Wu, Yu] (2023)
- Our main motivation: BPS black hole microstates in $\operatorname{AdS}_{5} \times S^{5}$
\rightarrow Requires studying strong coupling \& large N.

I will explain recent (perhaps modest) progress in this program.

- Cohomologies at weak-coupling (1-loop $\left.\sim O\left(g_{Y M}^{2}\right)\right)$
- Want to eventually study $S U(N \gg 1) . \quad \leftrightarrow \quad$ Today, I will report $S U(2) \&$ a bit of $S U(3)$.
- Qualitative features \& rough comparison w/ "gravity dual" (\leftarrow mostly omitted today)

Historical remarks

2004~ : [Gutowski, Reall] ... Constructions of BPS black holes in $\operatorname{AdS} S_{5} \times S^{5}$

2005~ : [Romelsberger] [Kinney, Maldacena, Minwalla, Raju] ...
Efficient way to study BPS spectrum \rightarrow the "superconformal index"

- At that time, it was unclear how to see black holes from this index.
- Direct studies w/ weak-coupling cohomology: No new solutions found beyond BPS gravitons. [Berkooz, Reichmann, Simon] (2006) [Grant, Grassi, SK, Minwalla] (2008) [Chang, Yin] (2013) ...

2018 ~ : [Cabo Bizet, Cassani, Martelli, Murthy] [Choi, J. Kim, SK, Nahmgoong] [Benini, Milan] ...
Realized how to see black holes from the index. (I.e. computed their entropy.)

- This index is coupling-independent \rightarrow Counts weak-coupling cohomologies.
- Since it counted black holes, we became confident that new cohomologies should exist.

2022 ~ : [Chang, Lin] [Choi, SK, E. Lee, Park] ...
With these recent realizations \& promises, revisited the cohomology problem.

- Especially because the cohomologies carry more information than the index.

Weak-coupling setup

$\mathrm{SU}(\mathrm{N})$ maximal SYM on R^{4} : all fields in adjoint rep. (written in $\mathrm{N}=1$ language)

3 chiral multiplets:	$\phi_{m}, \bar{\phi}^{m}$ and $\psi_{m \alpha}, \bar{\psi}_{\dot{\alpha}}^{m}$	$(m=1,2,3)$
vector multiplet:	$A_{\mu} \sim A_{\alpha \dot{\beta}} \quad$ and $\lambda_{\alpha}, \bar{\lambda}_{\dot{\alpha}}$	$(\mu=1, \cdots, 4) \quad(\alpha= \pm, \dot{\alpha}=\dot{ \pm})$

Gauge-invariant local BPS operators: (at $x^{\mu}=0$ on R^{4})

- Free limit $\left(g_{Y M} \rightarrow 0\right)$: Any gauge-invariants of the invariant fields under $Q \& Q^{\dagger}$:

$$
\bar{\phi}^{m}, \psi_{m+}, \tau_{\dot{\alpha}}, f_{++} \equiv F_{1+i 2,3+i 4} \text { \& derivatives } \partial_{1+i 2} \equiv \partial_{1}-i \partial_{2}, \partial_{3+i 4} \equiv \partial_{3}-i \partial_{4} \text { acting on them }
$$

- Not all of them are BPS at $g_{Y M} \neq 0$: At small $g_{Y M} \ll 1$, classical SUSY on them reads

$$
Q \bar{\phi}^{m}=0, Q \psi_{m+} \sim g_{Y M} \epsilon_{m n p}\left[\bar{\phi}^{n}, \bar{\phi}^{p}\right], Q f_{++} \sim g_{Y M}\left[\psi_{m+}, \bar{\phi}^{m}\right], Q \bar{\lambda}_{\dot{\alpha}}=0,\left[Q, D_{+\dot{\alpha}}\right] \sim g_{Y M}\left[\bar{\lambda}_{\dot{\alpha}},\right\}
$$

- Classical $Q \& Q^{\dagger}$ at $1 / 2$-loop \rightarrow Anomalous dimension $Q Q^{\dagger}+Q^{\dagger} Q \sim E-E_{B P S}$ at 1-loop, $O\left(g_{Y M}^{2}\right)$.

Goal: Find free BPS operators which remain BPS at 1-loop level.

- Remain BPS at strong-coupling? A non-renormalization theorem pursued. [Chang, Lin] (2022)
- But their index captures BH's \rightarrow So empirically, many of them should remain BPS.
- So expecting "certain" non-renormalization, we study 1-loop cohomologies.

The strategy

The problem at finite $N=2,3, \cdots$:

- Construct all cohomologies at given charges, and mod out those from BPS multi-gravitons
\rightarrow [Chang, Lin] (2022) did it \& found the first non-graviton cohomology for SU(2).

What are the "BPS gravitons at finite N " ...?

- Chiral primaries $\operatorname{tr}\left[\bar{\phi}^{\left(m_{1}\right.} \cdots \bar{\phi}^{\left.m_{n}\right)}\right]$, descendants (1-particle) \& their products (multi-particle)
- Finite N subtlety: \# of independent operators reduces due to trace relations
\rightarrow QFT dual of "stringy exclusion principle" due to giant gravitons
[Maldacena, Strominger] (1998)
[Jevicki, Ramgoolam] (1999)
[Ho, Ramgoolom, Tatar] (1999)
[Susskind, McGreevy, Toumbas] (2000)
[Grisaru, Myers, Tafjord] (2000)
[Hashimoto, Hirano, Itzhaki] (2000)
- So they reflect all the expected BPS graviton physics, including the finite N effects.

Remainders have chances to describe black holes. (\rightarrow Call "black hole operators")

- Conservatively, results at low $N=2,3, \cdots$ are just intermediate steps towards large N.
- Progressively, lessons on black holes in wildly quantum ($G_{N} \sim 1 / N^{2}$) gravity?

A streamlined strategy

To quickly diagnose which charge sectors host new operators, we use the index:

- Grade operators with charges appearing in the index, say with

$$
j \equiv 6(R+J)=2\left(R_{1}+R_{2}+R_{3}\right)+3\left(J_{1}+J_{2}\right) \geq 0 .
$$

- Compute the full index \& that over gravitons \rightarrow Subtract. [Choi, SK, E. Lee, S. Lee, Park] (2023)
$\mathrm{SU}(2) \rightarrow$ Study the index $Z(t)=\operatorname{Tr}\left[(-1)^{F} t^{j}\right]$
- In full generality, only have series expansions till certain order:

$$
\begin{aligned}
& Z(t)= 1+6 t^{4}-6 t^{5}-7 t^{6}+18 t^{7}+6 t^{8}-36 t^{9}+6 t^{10}+84 t^{11}-80 t^{12}-132 t^{13}+309 t^{14}-18 t^{15}-567 t^{16} \\
&+516 t^{17}+613 t^{18}-1392 t^{19}-180 t^{20}+2884 t^{21}-1926 t^{22}-4242 t^{23}+7890 t^{24}+792 t^{25}-15876 t^{26} \\
&+13804 t^{27}+15177 t^{28}-37536 t^{29}+7049 t^{30}+57522 t^{31}-58704 t^{32}+\cdots \\
& Z_{\text {grav }}(t)= 1+6 t^{4}-6 t^{5}-7 t^{6}+18 t^{7}+6 t^{8}-36 t^{9}+6 t^{10}+84 t^{11}-80 t^{12}-132 t^{13}+309 t^{14}-18 t^{15}-567 t^{16} \\
&+516 t^{17}+613 t^{18}-1392 t^{19}-180 t^{20}+2884 t^{21}-1926 t^{22}-4242 t^{23}+7891 t^{24}+786 t^{25}-15864 t^{26} \\
&+13804 t^{27}+15138 t^{28}-37476 t^{29}+7048 t^{30}+57414 t^{31}-58566 t^{32}+\cdots \\
& Z-Z_{\text {grav }}=-t^{24}+6 t^{25}-12 t^{26}+0 t^{27}+39 t^{28}-60 t^{29}+t^{30}+108 t^{31}-138 t^{32}+\cdots
\end{aligned}
$$

- Computed exactly in "BMN truncation": $\quad Q \bar{\phi}^{m}=0, Q \psi_{m+} \sim \epsilon_{m n p}\left[\bar{\phi}^{n}, \bar{\phi}^{p}\right], Q f_{++} \sim\left[\psi_{m+}, \bar{\phi}^{m}\right]$ [Berenstein, Maldacena, Nastase] (2002) [Nakwoo Kim, Klose, Plefka] (2003)

$$
\left[Z-Z_{\text {grav }}\right]_{\text {BMN }}=-\frac{t^{24}}{1-t^{12}} \cdot \frac{1}{\left(1-t^{8}\right)^{3}} \cdot\left(1-t^{2}\right)^{3}
$$

Constructions

An ∞-tower of non-graviton cohomologies, whose representatives are: $n=0,1,2, \ldots$

$$
\begin{aligned}
& O_{n}=(f \cdot f)^{n} \epsilon^{c_{1} c_{2} c_{3}}\left(\phi^{a} \cdot \psi_{c_{1}}\right)\left(\phi^{b} \cdot \psi_{c_{2}}\right)\left(\psi_{a} \cdot \psi_{b} \times \psi_{c_{3}}\right) \\
&+n(f \cdot f)^{n-1} \epsilon^{b_{1} b_{2} b_{3}} \epsilon_{1}^{c_{1} c_{2} c_{3}}\left(f \cdot \psi_{b_{1}}\right)\left(\phi^{a} \cdot \psi_{c_{1}}\right)\left(\psi_{b_{2}} \cdot \psi_{c_{2}}\right)\left(\psi_{a} \cdot \psi_{b_{3}} \times \psi_{c_{3}}\right) \\
&-\left(\frac{n}{72}+\frac{n(n-1)}{108}\right)(f \cdot f)^{n-1} \epsilon^{a_{1} a_{2} a_{3}} \epsilon^{b_{1} b_{2} b_{3} \epsilon_{3}} \epsilon_{1} c_{2} c_{3} \\
&\left.\psi_{a_{1}} \cdot \psi_{b_{1}} \times \psi_{c_{1}}\right)\left(\psi_{a_{2}} \cdot \psi_{b_{2}} \times \psi_{c_{2}}\right)\left(\psi_{a_{3}} \cdot \psi_{b_{3}} \times \psi_{c_{3}}\right)
\end{aligned}
$$

- In particular, the "threshold" non-graviton operator at t^{24} order:

$$
O_{0}=\epsilon^{p_{1} p_{2} p_{3}}\left(\phi^{m} \cdot \psi_{p_{1}}\right)\left(\phi^{n} \cdot \psi_{p_{2}}\right)\left(\psi_{m} \cdot \psi_{n} \times \psi_{p_{3}}\right)
$$

(Used 3d vector notation for $\operatorname{SU}(2)$ adjoints: $A \cdot B \sim \operatorname{tr}(A B)$ and $A \times B \sim[A, B]$)

This tower fully explains the BMN index:

Limited dressings by gravitons $\operatorname{tr}\left(2 \bar{\phi}^{m} f+\epsilon^{m n p} \psi_{n} \psi_{p}\right)$ (only 3 out of 17 gravitons in BMN sector)

- These operators don't really look like black holes in most senses. (E.g. small entropy)
- But they exhibit subtle properties, qualitatively reminiscent of black holes. (\rightarrow next slide)

A no-hair theorem?

To appreciate the last point, see the BMN results:

- $\quad Q$ satisfies Leibniz rule \rightarrow The product (BH) x (graviton) is another cohomology.
- There are 17 different species of graviton particles in the BMN sector.
- But "black hole operators" O_{n} abhor dressings by all but 3 gravitons: $\operatorname{tr}\left(2 \bar{\phi}^{m} f+\epsilon^{m n p} \psi_{n} \psi_{p}\right)$.

$$
\left[Z-Z_{\text {grav }}\right]_{\mathrm{BMN}}=-\frac{t^{24}}{1-t^{12}} \cdot \frac{1}{\left(1-t^{8}\right)^{3}} \cdot\left(1-t^{2}\right)^{3}
$$

This feature continues in the general $\mathrm{SU}(2)$ index:

- Eliminating $\operatorname{PSU}(1,2 \mid 3) \subset \operatorname{PSU}(2,2 \mid 4)$ superconformal descendants of O_{0}, the remainder is:

$$
\chi_{0}(t)=-t^{24} \stackrel{+6 t^{25}-12 t^{26}+0 t^{27}+39 t^{28}-60 t^{29}+t^{30}+108 t^{31}}{ } \quad Z-Z_{\text {grav }}-\chi_{0}(t)=-3 t^{32}+\cdots
$$

- The "boring" range $25 \leq j \leq 31 \rightarrow$ Many product cohomologies absent in the index.
- Simplest possibility: All Q-exact, i.e. absent \leftarrow Checked explicitly for many (next slide).

Only a partial no-hair theorem:

- Conformal primaries of gravitons: 29 of 32 don't dress O_{0} (at least invisible in the index).
- Conformal descendants...? (more in our paper \rightarrow next page)

Illustration: Q-exactness at low levels

t^{28}

$$
\begin{aligned}
O_{0}\left(\bar{\phi}^{(m} \cdot \bar{\phi}^{n)}\right)=-\frac{1}{14} Q & {\left[20 \epsilon^{r s(m}\left(\bar{\phi}^{n)} \cdot \psi_{p+}\right)\left(\bar{\phi}^{p} \cdot \psi_{r+}\right)\left(\bar{\phi}^{q} \cdot \psi_{q+}\right)\left(f_{++} \cdot \psi_{s+}\right)\right.} \\
& -20 \epsilon^{p r s}\left(\bar{\phi}^{(m} \cdot \psi_{p+}\right)\left(\bar{\phi}^{n)} \cdot \psi_{r+}\right)\left(\bar{\phi}^{q} \cdot \psi_{q+}\right)\left(f_{++} \cdot \psi_{s+}\right) \\
& +30 \epsilon^{p r s}\left(\bar{\phi}^{(m} \cdot \psi_{p+}\right)\left(\bar{\phi}^{n)} \cdot \psi_{r+}\right)\left(\bar{\phi}^{q} \cdot \psi_{s+}\right)\left(f_{++} \cdot \psi_{q+}\right) \\
& -7 \epsilon^{a_{1} a_{2} p} \epsilon^{b_{1} b_{2}(m}\left(\bar{\phi}^{n)} \cdot \psi_{p+}\right)\left(\bar{\phi}^{q} \cdot \psi_{q+}\right)\left(\psi_{a_{1}+} \cdot \psi_{a_{2}+}\right)\left(\psi_{b_{1}+} \cdot \psi_{b_{2}+}\right) \\
& \left.+18 \epsilon^{a_{1} a_{2} p} \epsilon^{b_{1} b_{2}(m}\left(\bar{\phi}^{n)} \cdot \psi_{q+}\right)\left(\bar{\phi}^{q} \cdot \psi_{p+}\right)\left(\psi_{a_{1}+} \cdot \psi_{a_{2}+}\right)\left(\psi_{b_{1}+} \cdot \psi_{b_{2}+}\right)\right]
\end{aligned}
$$

$t^{29}: \quad O_{0}\left(\bar{\phi}^{m} \cdot \bar{\lambda}_{\dot{\alpha}}\right)=\frac{1}{8} Q\left[40 \epsilon^{m n p}\left(f_{++} \cdot \psi_{q+}\right)\left(\bar{\lambda}_{\dot{\alpha}} \cdot \psi_{r+}\right)\left(\bar{\phi}^{q} \cdot \psi_{n+}\right)\left(\bar{\phi}^{r} \cdot \psi_{p+}\right)\right.$

$$
\begin{aligned}
& -4 \epsilon^{m a_{1} a_{2}} \epsilon^{n b_{1} b_{2}}\left(\bar{\lambda}_{\dot{\alpha}} \cdot \psi_{n+}\right)\left(\bar{\phi}^{p} \cdot \psi_{p+}\right)\left(\psi_{a_{1}+} \cdot \psi_{a_{2}+}\right)\left(\psi_{b_{1}+} \cdot \psi_{b_{2}+}\right) \\
& +6 \epsilon^{m a_{1} a_{2}} \epsilon^{n b_{1} b_{2}}\left(\bar{\lambda}_{\dot{\alpha}} \cdot \psi_{p+}\right)\left(\bar{\phi}^{p} \cdot \psi_{n+}\right)\left(\psi_{a_{1}+} \cdot \psi_{a_{2}+}\right)\left(\psi_{b_{1}+} \cdot \psi_{b_{2}+}\right) \\
& \left.+\epsilon^{n a_{1} a_{2}} \epsilon^{p b_{1} b_{2}}\left(\bar{\lambda}_{\dot{\alpha}} \cdot \psi_{n+}\right)\left(\bar{\phi}^{m} \cdot \psi_{p+}\right)\left(\psi_{a_{1}+} \cdot \psi_{a_{2}+}\right)\left(\psi_{b_{1}+} \cdot \psi_{b_{2}+}\right)\right]
\end{aligned}
$$

$t^{30}: \quad O_{0}\left(\bar{\phi}^{m} \cdot \psi_{n+}-\frac{1}{3} \delta_{n}^{m} \bar{\phi}^{p} \cdot \psi_{p+}\right)$

$$
=\frac{1}{4} Q\left[\epsilon_{n p q} \epsilon^{r a_{1} a_{2}} \epsilon^{q b_{1} b_{2}} \epsilon^{m c_{1} c_{2}}\left(\bar{\phi}^{p} \cdot \psi_{r+}\right)\left(\psi_{a_{1}+} \cdot \psi_{a_{2}+}\right)\left(\psi_{b_{1}+} \cdot \psi_{b_{2}+}\right)\left(\psi_{c_{1}+} \cdot \psi_{c_{2}+}\right)\right]
$$

Concluding remarks

"Construction" (in a limited sense) of BPS black hole microstates

- Found new "black hole cohomologies" for SU(2)
- What I presented are not actual BPS states, even at 1-loop. Just representatives.
[Chang, Feng, Lin, Tao] (2023) [Budzik, Murali, Vieira] (2023)
- \quad SU(3) in BMN sector [Jae Hyeok Choi, Jehyun Lee, Siyul Lee] (work in progress)

$$
Z-Z_{\text {grav }}=-t^{24}+3 t^{26}-3 t^{28}-10 t^{30}+15 t^{32}+24 t^{34}-36 t^{36}-45 t^{38}+39 t^{40}+124 t^{42}+O\left(t^{44}\right)
$$

Same threshold level as $\mathrm{SU}(2)$)..!

- Higher N? Higher charges? Analytic structures? Insights from emergent structures of holomorphically twisted QFT? ... [Budzik, Gaiotto, Kulp, Williams, Wu, Yu] (2023)

Better picture on hairy (BPS) black holes in $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$?
[Bhattacharyya, Minwalla, Papadodimas] (2010) [Markeviciute, Santos] [Markeviciute] (2018)
[Niehoff, Santos, Way] (2015) [Chesler] (2021) [SK, Kundu, E. Lee, J. Lee, Minwalla, Patel] (2023) ..

- Studied BPS perturbations of BPS black holes, dual to $\left(\partial_{++}\right)^{m_{1}}\left(\partial_{+\dot{\prime}}\right)^{m_{2}} \operatorname{tr}\left(X^{2}+Y^{2}+Z^{2}\right)$

Similar "partial no-hair" behavior as SU(2) cohomologies. [Choi, SK, E. Lee, S. Lee, Park] (2023)

