Emanant Symmetries Nathan Seiberg IAS

Meng Cheng and NS, arXiv:2211.12543
NS and Shu-Heng Shao, arXiv:2307.02534
NS and Shu-Heng Shao, to appear.
NS, Sahand Seifnashri, and Shu-Heng Shao, to appear.

Thanks to Tom Banks

Global symmetry – comparing the UV and the IR

Every internal symmetry operator in the UV is mapped to an internal symmetry operator in the IR (homomorphism)

 $G_{UV} \rightarrow G_{IR}$

Some UV symmetries are trivial in the IR (kernel).

New symmetries in the IR theory (cokernel).

- Emergent/accidental symmetries
 - Arise when the IR theory has no relevant, G_{UV} -preserving, but G_{IR} -violating operators (e.g., B L in the Standard Model, continuous rotation in lattice models).
 - The low-energy effective Lagrangian includes irrelevant operators that violate the emergent symmetries (e.g., proton decay or neutrino masses in the Standard Model).
- Emanant symmetries emanate from *UV* space symmetries...

Global symmetry – comparing the UV and the IR

- Emanant symmetries emanate from *UV* space symmetries, typically from UV translations. Unlike emergent symmetries:
 - There can be relevant operators violating the emanant symmetries, but they are not present in the low-energy effective Lagrangian (or Hamiltonian).
 - The low-energy effective Lagrangian does not include even irrelevant operators that violate the emanant symmetry.
 - The emanant symmetry is exact in the low-energy theory!
 - 't Hooft anomaly matching for emanant symmetries not for emergent symmetries.
 - Examples (old wine in a new bottle): a system with a U(1) global symmetry with a chemical potential, various spin models, lattice fermions, ...

Majorana chain [many references]

A closed lattice with L sites and real periodic fermions χ_{ℓ} at the sites

$$\chi_{\ell} = \chi_{\ell+L}$$
 , $\{\chi_{\ell}, \chi_{\ell'}\} = 2\delta_{\ell,\ell'}$

Impose invariance under lattice translation ($\ell \rightarrow \ell + 1$) and fermionparity ($\chi_{\ell} \rightarrow -\chi_{\ell}$)

Typical Hamiltonian $H_{+} = \frac{i}{2} \sum_{\ell=1}^{L} \chi_{\ell+1} \chi_{\ell}$

Add a fermion-parity defect (equivalently, use H_+ with anti-periodic boundary conditions). $H_- = \frac{i}{2} \sum_{\ell=1}^{L-1} \chi_{\ell+1} \chi_{\ell} - \frac{i}{2} \chi_1 \chi_L$

Most of our discussion is independent of the details of H_{\pm} . Four fermionic theories:

- Even L. H₋ leads in the continuum to the NSNS Majorana CFT and H₊ leads to the RR theory.
- Odd L. H_{-} leads in the continuum to the RNS theory Majorana CFT and H_{+} leads to the NSR theory.

Majorana chain – even L = 2N [many references]

Typical Hamiltonians

$$H_{\pm} = \frac{i}{2} \sum_{\ell=1}^{L-1} \chi_{\ell+1} \chi_{\ell} \pm \frac{i}{2} \chi_1 \chi_L$$

Symmetries generated by translation T_{\pm} and fermion parity $(-1)^F$ For $H_ T_-^L = (-1)^F$ $T_-(-1)^F = (-1)^F T_-$

 $T_{+}^{L} = 1$

For H_+

 $T_+(-1)^F = -(-1)^F T_+$ [Rahmani, Zhu, Franz, Affleck, Hsieh, Hal'asz, Grover]

The minus sign reflects an anomaly between fermion-parity and

lattice-translation.

In the continuum, no anomaly involving translations. How is this UV anomaly realized at low energies?

Majorana chain – even L = 2N [many references]

$$H_{\pm} = \frac{i}{2} \sum_{\ell=1}^{L-1} \chi_{\ell+1} \chi_{\ell} \pm \frac{i}{2} \chi_1 \chi_L$$

For the specific H_{\pm} , normal mode expansion:

• Right-movers and left-movers from the two ends of the spectrum

6

- H_+ leads to the RR theory. H_- leads to the NSNS theory.
- On the lattice, only $(-1)^{F}$; no $(-1)^{F_{L}}$, $(-1)^{F_{R}}$.
- Without a chiral symmetry, why is the fermion massless?

Majorana chain – even L = 2N

Consider H_+ . On the lattice, no $(-1)^{F_L}$. In the IR, it emanates from T_+ . $T_+ = 1$ $T_+ = (-1)^{F_L} e^{\frac{2\pi i P_+}{L}}$ $e^{2\pi i P_+} = 1$

- P_+ is the momentum of the continuum RR theory.
- On the lattice, only T_+ is well-defined. In the continuum, $(-1)^{F_L}$ and P_+ are separately meaningful exact symmetries.
- The relation $T_{+} = (-1)^{F_L} e^{\frac{2\pi i P_{+}}{L}}$ is exact, without finite L corrections.
- The anomaly in the continuum RR theory [...; Delmastro, Gaiotto, Gomis; ...] $(-1)^{F}(-1)^{F_{L}} = -(-1)^{F_{L}}(-1)^{F}$

matches the UV fermion-parity/lattice-translation anomaly.

Similarly for *H*_, except $e^{2\pi i P_{-}} = T_{-}^{L} = (-1)^{F}$

Majorana chain – odd L = 2N + 1 $H_{\pm} = \frac{i}{2} \sum_{\ell=1}^{L-1} \chi_{\ell+1} \chi_{\ell} \pm \frac{i}{2} \chi_1 \chi_L$

$$n_{\pm} = \frac{1}{2} \sum_{\ell=1}^{\chi_{\ell+1} \chi_{\ell}} \pm \frac{1}{2}$$

No $(-1)^{F_L}$, $(-1)^{F_R}$, $(-1)^F$.

Only lattice translation T_{\pm} , with an anomaly $T_{\pm}^{L} = e^{\mp \frac{2\pi i}{16}}$

- Right-movers and left-movers from the two ends of the spectrum
- H_+ leads to the NSR theory. H_- leads to the RNS theory.

Majorana chain – odd L = 2N + 1

- No $(-1)^{F_L}$, $(-1)^{F_R}$, $(-1)^F$ on the lattice.
- Consider H_+ . In the IR, $(-1)^{F_L}$ emanates from T_+

$$T_{+}^{L} = e^{-\frac{\pi i P_{+}}{16}}$$
$$T_{+} = (-1)^{F_{L}} e^{\frac{2\pi i P_{+}}{L}}$$
$$e^{2\pi i P_{+}} = (-1)^{F_{L}} e^{-\frac{2\pi i}{16}}$$

 $2\pi i$

- $-P_+$ is the momentum of the continuum NSR theory.
- On the lattice, only T_+ is well-defined. In the continuum, $(-1)^{F_L}$ and P_+ are separately meaningful exact symmetries.
- The relation $T_{+} = (-1)^{F_L} e^{\frac{2\pi i P_{+}}{L}}$ is exact, without finite L corrections.
- For H_- : $+ \rightarrow -$, $F_L \rightarrow F_R$, and we find the RNS theory.

From the Majorana chain to the Ising model – GSO on the lattice

Sum over the "spin structures" by first doubling the Hilbert space (related work in [Baake, Chaselon, Schlottmann; Grimm, Schutz; Grimm])

$$\widetilde{\mathcal{H}}=\mathcal{H}\oplus\mathcal{H}$$

with the Hamiltonian

$$\widetilde{H} = \begin{pmatrix} H_- & 0\\ 0 & H_+ \end{pmatrix}$$

 $(H_+ \text{ corresponds to fermions with periodic boundary conditions. } H_- corresponds to fermions with antiperiodic boundary conditions.)$

Translation symmetry $ilde{T}$

$$\tilde{T} = \begin{pmatrix} T_{-} & 0 \\ 0 & T_{+} \end{pmatrix}$$

Because of the doubling of the Hilbert space, a quantum \mathbb{Z}_2 symmetry

$$\tilde{\eta} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

From the Majorana chain to the Ising model – even L = 2N

Some operators in the doubled Hilbert space $\widetilde{\mathcal{H}}$ are nonlocal. So imitating the continuum, we project:

 $\tilde{\eta}(-1)^F = +1$ leads to the Ising model $|\widetilde{\mathcal{H}}|_{Ising} = \mathcal{H}_{Ising}$ Using a Jordan-Wigner transformation in \mathcal{H}_{Ising} ,

$$H_{Ising} = \tilde{H} \Big|_{Ising} = -\frac{1}{2} \sum_{j=1}^{N} Z_j - \frac{1}{2} \sum_{j=1}^{N} X_j X_{j+1}$$

 $(X_j, Y_j, Z_j \text{ are Pauli matrices at the site } j = 1, \dots, N)$ Similarly, $\tilde{\eta}(-1)^F = -1$ leads to the \mathbb{Z}_2 -twisted Ising model $H_{twisted \ Ising} = -\frac{1}{2} \sum_{j=1}^N Z_j - \frac{1}{2} \sum_{j=1}^{N-1} X_j X_{j+1} + \frac{1}{2} X_N X_1$

From the Majorana chain to the Ising $\tilde{T} = \begin{pmatrix} T_{-} & 0 \\ 0 & T_{+} \end{pmatrix} \text{ does not act in } \widetilde{\mathcal{H}}|_{Ising}. \text{ It is not a symmetry.}$ \tilde{T}^2 and $\tilde{\eta}$ act in $\tilde{\mathcal{H}}|_{Ising}$. Standard symmetries of the Ising model $T_{Ising} = \tilde{T}^2 \Big|_{Ising}$, $\eta = \tilde{\eta} \Big|_{Ising}$ $T_{Isina}^N = 1$ Lattice-translation $n^2 = 1$ \mathbb{Z}_2 Ising symmetry

 $\begin{pmatrix} T_{-} & 0 \\ 0 & 0 \end{pmatrix}$ commutes with the $\tilde{\eta}(-1)^{F} = +1$ projection and hence acts in $\tilde{\mathcal{H}}|_{Ising}$.

 $D = \begin{pmatrix} T_{-} & 0 \\ 0 & 0 \end{pmatrix}|_{Ising}$ is a new symmetry of the lattice Ising model.

From the Majorana chain to the Ising model – even L = 2N

New noninvertible symmetry of the lattice Ising model

 $D = \begin{pmatrix} T_{-} & 0 \\ 0 & 0 \end{pmatrix} \Big|_{Ising}$ $D^{2} = \frac{1}{2}(1+\eta)T_{Ising}$

Can express *D* in terms of the local operators X_j , Y_j , Z_j .

From the Majorana chain to the Ising model – even L = 2N

The noninvertible lattice symmetry $D = \begin{pmatrix} T_{-} & 0 \\ 0 & 0 \end{pmatrix} |_{Ising}$ flows to a

noninvertible symmetry of the continuum theory \mathcal{D} [Oshikawa, Affleck; Petkova, Zuber; Frohlich, Fuchs, Runkel, Schweigert; Chang, Lin, Shao, Wang, Yin]

$$D = \frac{1}{\sqrt{2}} \mathcal{D} e^{\frac{2\pi i P}{2N}}$$

 $\mathcal{D}^2 = 1 + \eta$, $\eta^2 = 1$, $\eta \mathcal{D} = \mathcal{D}\eta = \mathcal{D}$, $e^{2\pi i P} = 1$

D and *D* satisfy different algebras, $D^2 = \frac{1}{2}(1+\eta)T_{Ising}$.

 \mathcal{D} is an emanant noninvertible symmetry. It is exact in the IR effective theory. (Not violated even by irrelevant operators.)

On the lattice, only *D* and T_{Ising} . In the continuum, *P* and *D*.

The relation $D = \frac{1}{\sqrt{2}} D e^{\frac{2\pi i P}{2N}}$ is exact. No finite N corrections.

From the Majorana chain to the Ising model – odd L = 2N + 1

In this case, no projection is needed.

A Jordan-Wigner transformation in the doubled Hilbert space $\widetilde{\mathcal{H}}$ leads to the Ising model with a D defect [Schutz; Grimm, Schutz; Grimm; Ho, Cincio, Moradi, Gaiotto, Vidal; Hauru, Evenbly, Ho, Gaiotto, Vidal; Aasen, Mong, Fendley]

$$H = -\frac{1}{2} \sum_{j=1}^{N} Z_j - \frac{1}{2} \sum_{j=1}^{N} X_j X_{j+1} - \frac{1}{2} X_1 Y_{N+1}$$

It flows in the IR to the Ising CFT with a noninvertible defect \mathcal{D} [Oshikawa, Affleck; Petkova, Zuber; Frohlich, Fuchs, Runkel, Schweigert; Chang, Lin, Shao, Wang, Yin].

Summary

- UV-translation can lead to an emanant internal symmetry. Unlike an emergent/accidental symmetry, it is exact at low energies – not violated by relevant or irrelevant operators.
- Anomalies involving UV-translations are matched by anomalies in emanant symmetries.
- Four versions of the lattice Majorana chain flow to the continuum Majorana theory with four different defects, NSNS, RR, NSR, and RNS. In each case, a chiral fermion parity symmetry emanates from lattice-translation *T*. It is exact in the low-energy theory.
- Summing over the lattice spin structures leads to three bosonic lattice models: Ising, \mathbb{Z}_2 -twisted Ising, and Ising with a D defect.
- *D* is an exact noninvertible symmetry of the lattice model.
- These lattice models flow to the three continuum Ising CFTs with defects (corresponding to 1, ε, σ).
- The noninvertible duality symmetry \mathcal{D} of the CFT emanates from D.

Thank you