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Global symmetry – comparing the UV and 
the IR

Every internal symmetry operator in the UV is mapped to an 
internal symmetry operator in the IR (homomorphism)

𝐺𝐺𝑈𝑈𝑈𝑈 → 𝐺𝐺𝐼𝐼𝐼𝐼
Some UV symmetries are trivial in the IR (kernel).
New symmetries in the IR theory (cokernel).
• Emergent/accidental symmetries

– Arise when the IR theory has no relevant, 𝐺𝐺𝑈𝑈𝑈𝑈-preserving, but 
𝐺𝐺𝐼𝐼𝐼𝐼-violating operators (e.g., 𝐵𝐵 − 𝐿𝐿 in the Standard Model, 
continuous rotation in lattice models).

– The low-energy effective Lagrangian includes irrelevant 
operators that violate the emergent symmetries (e.g., proton 
decay or neutrino masses in the Standard Model).

• Emanant symmetries emanate from 𝑈𝑈𝑈𝑈 space symmetries…
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Global symmetry – comparing the UV and 
the IR

• Emanant symmetries emanate from 𝑈𝑈𝑈𝑈 space symmetries, 
typically from UV translations. Unlike emergent symmetries:
– There can be relevant operators violating the emanant 

symmetries, but they are not present in the low-energy 
effective Lagrangian (or Hamiltonian).

– The low-energy effective Lagrangian does not include even 
irrelevant operators that violate the emanant symmetry.

– The emanant symmetry is exact in the low-energy theory!
– ‘t Hooft anomaly matching for emanant symmetries – not for 

emergent symmetries.
– Examples (old wine in a new bottle): a system with a 𝑈𝑈(1) 

global symmetry with a chemical potential, various spin 
models, lattice fermions, …
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Majorana chain [many references]

A closed lattice with 𝐿𝐿 sites and real periodic fermions 𝜒𝜒ℓ at the sites
𝜒𝜒ℓ = 𝜒𝜒ℓ+𝐿𝐿 ,  {𝜒𝜒ℓ,𝜒𝜒ℓ′} = 2𝛿𝛿ℓ,ℓ′

Impose invariance under lattice translation (ℓ → ℓ + 1) and fermion-
parity (𝜒𝜒ℓ → −𝜒𝜒ℓ)

Typical Hamiltonian        𝐻𝐻+ = 𝑖𝑖
2
∑ℓ=1𝐿𝐿 𝜒𝜒ℓ+1𝜒𝜒ℓ

Add a fermion-parity defect (equivalently, use 𝐻𝐻+ with anti-periodic 
boundary conditions).   𝐻𝐻− = 𝑖𝑖

2
∑ℓ=1𝐿𝐿−1 𝜒𝜒ℓ+1𝜒𝜒ℓ −

𝑖𝑖
2
𝜒𝜒1𝜒𝜒𝐿𝐿

Most of our discussion is independent of the details of 𝐻𝐻±.
Four fermionic theories:
• Even 𝐿𝐿.  𝐻𝐻− leads in the continuum to the NSNS Majorana CFT and 
𝐻𝐻+ leads to the RR theory.

• Odd 𝐿𝐿.  𝐻𝐻− leads in the continuum to the RNS theory Majorana 
CFT and 𝐻𝐻+ leads to the NSR theory. 4



Majorana chain – even 𝐿𝐿 = 2𝑁𝑁 [many references]

Typical Hamiltonians     

𝐻𝐻± =
𝑖𝑖
2
�
ℓ=1

𝐿𝐿−1

𝜒𝜒ℓ+1𝜒𝜒ℓ ±
𝑖𝑖
2
𝜒𝜒1𝜒𝜒𝐿𝐿

Symmetries generated by translation 𝑇𝑇± and fermion parity −1 𝐹𝐹

For 𝐻𝐻−                                         𝑇𝑇−𝐿𝐿 = −1 𝐹𝐹

𝑇𝑇− −1 𝐹𝐹 = −1 𝐹𝐹𝑇𝑇−
For 𝐻𝐻+                                       𝑇𝑇+𝐿𝐿 = 1

𝑇𝑇+ −1 𝐹𝐹 = − −1 𝐹𝐹𝑇𝑇+
[Rahmani, Zhu, Franz, Affleck; Hsieh, Hal´asz, Grover]

The minus sign reflects an anomaly between fermion-parity and 
lattice-translation.
In the continuum, no anomaly involving translations. How is this UV 
anomaly realized at low energies? 
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𝐻𝐻± =
𝑖𝑖
2
�
ℓ=1

𝐿𝐿−1

𝜒𝜒ℓ+1𝜒𝜒ℓ ±
𝑖𝑖
2
𝜒𝜒1𝜒𝜒𝐿𝐿

For the specific 𝐻𝐻±, normal mode expansion:
                          

• Right-movers and left-movers from the two ends of the spectrum
• 𝐻𝐻+ leads to the RR theory.  𝐻𝐻− leads to the NSNS theory.
• On the lattice, only −1 𝐹𝐹; no −1 𝐹𝐹𝐿𝐿, −1 𝐹𝐹𝑅𝑅.
• Without a chiral symmetry, why is the fermion massless? 6

𝐸𝐸(𝑘𝑘)

𝑘𝑘𝐿𝐿
2

𝐿𝐿
4

𝐻𝐻−𝐸𝐸(𝑘𝑘)

𝑘𝑘𝐿𝐿
2

𝐿𝐿
4

𝐻𝐻+

Majorana chain – even 𝐿𝐿 = 2𝑁𝑁 [many references]

0 0



Consider 𝐻𝐻+.  On the lattice, no −1 𝐹𝐹𝐿𝐿.  In the IR, it emanates from 
𝑇𝑇+.                                                𝑇𝑇+𝐿𝐿 = 1 

𝑇𝑇+ = −1 𝐹𝐹𝐿𝐿𝑒𝑒
2𝜋𝜋𝑖𝑖𝑃𝑃+
𝐿𝐿

𝑒𝑒2𝜋𝜋𝑖𝑖𝑃𝑃+ = 1 
• 𝑃𝑃+ is the momentum of the continuum RR theory.
• On the lattice, only 𝑇𝑇+ is well-defined.  In the continuum, −1 𝐹𝐹𝐿𝐿  

and 𝑃𝑃+ are separately meaningful exact symmetries. 

• The relation 𝑇𝑇+ = −1 𝐹𝐹𝐿𝐿𝑒𝑒
2𝜋𝜋𝜋𝜋𝑃𝑃+

𝐿𝐿  is exact, without finite 𝐿𝐿 
corrections.

• The anomaly in the continuum RR theory […; Delmastro, Gaiotto, Gomis; 
...] 

−1 𝐹𝐹 −1 𝐹𝐹𝐿𝐿 = − −1 𝐹𝐹𝐿𝐿 −1 𝐹𝐹

matches the UV fermion-parity/lattice-translation anomaly.
Similarly for 𝐻𝐻−, except 𝑒𝑒2𝜋𝜋𝑖𝑖 𝑃𝑃− = 𝑇𝑇−𝐿𝐿 = −1 𝐹𝐹 7

Majorana chain – even 𝐿𝐿 = 2𝑁𝑁



Majorana chain – odd 𝐿𝐿 = 2𝑁𝑁 + 1
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𝑘𝑘𝐿𝐿
2

𝐿𝐿
4

𝑘𝑘𝐿𝐿
2

𝐿𝐿
4

𝐻𝐻−𝐻𝐻+ 𝐸𝐸(𝑘𝑘)𝐸𝐸(𝑘𝑘)

0 0

𝐻𝐻± =
𝑖𝑖
2
�
ℓ=1

𝐿𝐿−1

𝜒𝜒ℓ+1𝜒𝜒ℓ ±
𝑖𝑖
2
𝜒𝜒1𝜒𝜒𝐿𝐿

No −1 𝐹𝐹𝐿𝐿, −1 𝐹𝐹𝑅𝑅, −1 𝐹𝐹.  

Only lattice translation 𝑇𝑇±, with an anomaly    𝑇𝑇±
𝐿𝐿 = 𝑒𝑒∓

2𝜋𝜋𝜋𝜋
16  

                                 

• Right-movers and left-movers from the two ends of the spectrum
• 𝐻𝐻+ leads to the NSR theory. 𝐻𝐻− leads to the RNS theory.



• No −1 𝐹𝐹𝐿𝐿, −1 𝐹𝐹𝑅𝑅, −1 𝐹𝐹 on the lattice.  
• Consider 𝐻𝐻+.  In the IR, −1 𝐹𝐹𝐿𝐿  emanates from 𝑇𝑇+

𝑇𝑇+𝐿𝐿 = 𝑒𝑒−
2𝜋𝜋𝑖𝑖
16  

𝑇𝑇+ = −1 𝐹𝐹𝐿𝐿𝑒𝑒
2𝜋𝜋𝑖𝑖𝑃𝑃+
𝐿𝐿

𝑒𝑒2𝜋𝜋𝑖𝑖𝑃𝑃+ = −1 𝐹𝐹𝐿𝐿𝑒𝑒−
2𝜋𝜋𝑖𝑖
16  

– 𝑃𝑃+ is the momentum of the continuum NSR theory.
– On the lattice, only 𝑇𝑇+ is well-defined.  In the continuum, −1 𝐹𝐹𝐿𝐿  

and 𝑃𝑃+ are separately meaningful exact symmetries. 

– The relation 𝑇𝑇+ = −1 𝐹𝐹𝐿𝐿𝑒𝑒
2𝜋𝜋𝜋𝜋𝑃𝑃+

𝐿𝐿  is exact, without finite 𝐿𝐿 
corrections.

• For 𝐻𝐻−:  + →  −, 𝐹𝐹𝐿𝐿→ 𝐹𝐹𝐼𝐼, and we find the RNS theory.

Majorana chain – odd 𝐿𝐿 = 2𝑁𝑁 + 1
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From the Majorana chain to the Ising 
model – GSO on the lattice

Sum over the “spin structures” by first doubling the Hilbert space 
(related work in [Baake, Chaselon, Schlottmann; Grimm, Schutz; Grimm])  

�ℋ = ℋ⊕ℋ

with the Hamiltonian         �𝐻𝐻 = 𝐻𝐻− 0
0 𝐻𝐻+

(𝐻𝐻+ corresponds to fermions with periodic boundary conditions.  𝐻𝐻− 
corresponds to fermions with antiperiodic boundary conditions.)

Translation symmetry        �𝑇𝑇 = 𝑇𝑇− 0
0 𝑇𝑇+

Because of the doubling of the Hilbert space, a quantum ℤ2 symmetry

�𝜂𝜂 = 1 0
0 −1
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From the Majorana chain to the Ising 
model – even 𝐿𝐿 = 2𝑁𝑁

Some operators in the doubled Hilbert space �ℋ are nonlocal.  So 
imitating the continuum, we project:

�𝜂𝜂 −1 𝐹𝐹 = +1 leads to the Ising model     �ℋ|𝐼𝐼𝐼𝐼𝑖𝑖𝐼𝐼𝐼𝐼 = ℋ𝐼𝐼𝐼𝐼𝑖𝑖𝐼𝐼𝐼𝐼

Using a Jordan-Wigner transformation in ℋ𝐼𝐼𝐼𝐼𝑖𝑖𝐼𝐼𝐼𝐼,

𝐻𝐻𝐼𝐼𝐼𝐼𝑖𝑖𝐼𝐼𝐼𝐼 = �𝐻𝐻 �
𝐼𝐼𝐼𝐼𝑖𝑖𝐼𝐼𝐼𝐼

= −
1
2
�
𝑗𝑗=1

𝑁𝑁 

𝑍𝑍𝑗𝑗 −
1
2
�
𝑗𝑗=1

𝑁𝑁

𝑋𝑋𝑗𝑗𝑋𝑋𝑗𝑗+1

(𝑋𝑋𝑗𝑗 ,𝑌𝑌𝑗𝑗 ,𝑍𝑍𝑗𝑗  are Pauli matrices at the site 𝑗𝑗 = 1,⋯ ,𝑁𝑁)

Similarly, �𝜂𝜂 −1 𝐹𝐹 = −1 leads to the ℤ2-twisted Ising model 

𝐻𝐻𝑡𝑡𝑡𝑡𝑖𝑖𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡 𝐼𝐼𝐼𝐼𝑖𝑖𝐼𝐼𝐼𝐼 = −1
2
∑𝑗𝑗=1𝑁𝑁 𝑍𝑍𝑗𝑗 −

1
2
∑𝑗𝑗=1𝑁𝑁−1𝑋𝑋𝑗𝑗𝑋𝑋𝑗𝑗+1 + 1

2
𝑋𝑋𝑁𝑁𝑋𝑋1
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From the Majorana chain to the Ising 
model – even 𝐿𝐿 = 2𝑁𝑁

�𝑇𝑇 = 𝑇𝑇− 0
0 𝑇𝑇+

  does not act in �ℋ|𝐼𝐼𝐼𝐼𝑖𝑖𝐼𝐼𝐼𝐼.  It is not a symmetry.    

�𝑇𝑇2 and �𝜂𝜂  act in �ℋ|𝐼𝐼𝐼𝐼𝑖𝑖𝐼𝐼𝐼𝐼.  Standard symmetries of the Ising model

𝑇𝑇𝐼𝐼𝐼𝐼𝑖𝑖𝐼𝐼𝐼𝐼 = �𝑇𝑇2 �
𝐼𝐼𝐼𝐼𝑖𝑖𝐼𝐼𝐼𝐼

 , 𝜂𝜂 = �𝜂𝜂 �
𝐼𝐼𝐼𝐼𝑖𝑖𝐼𝐼𝐼𝐼

Lattice-translation                  𝑇𝑇𝐼𝐼𝐼𝐼𝑖𝑖𝐼𝐼𝐼𝐼𝑁𝑁 = 1

ℤ2 Ising symmetry                     𝜂𝜂2= 1

𝑇𝑇− 0
0 0  commutes with the �𝜂𝜂 −1 𝐹𝐹 = +1 projection and hence 

acts in �ℋ|𝐼𝐼𝐼𝐼𝑖𝑖𝐼𝐼𝐼𝐼. 

𝐷𝐷 = 𝑇𝑇− 0
0 0

|𝐼𝐼𝐼𝐼𝑖𝑖𝐼𝐼𝐼𝐼 is a new symmetry of the lattice Ising model.



From the Majorana chain to the Ising 
model – even 𝐿𝐿 = 2𝑁𝑁

New noninvertible symmetry of the lattice Ising model

𝐷𝐷 = 𝑇𝑇− 0
0 0 �

𝐼𝐼𝐼𝐼𝑖𝑖𝐼𝐼𝐼𝐼

𝐷𝐷2 =
1
2

1 + 𝜂𝜂 𝑇𝑇𝐼𝐼𝐼𝐼𝑖𝑖𝐼𝐼𝐼𝐼

Can express 𝐷𝐷 in terms of the local operators 𝑋𝑋𝑗𝑗 ,𝑌𝑌𝑗𝑗 ,𝑍𝑍𝑗𝑗.
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From the Majorana chain to the Ising 
model – even 𝐿𝐿 = 2𝑁𝑁

The noninvertible lattice symmetry 𝐷𝐷 = 𝑇𝑇− 0
0 0

|𝐼𝐼𝐼𝐼𝑖𝑖𝐼𝐼𝐼𝐼 flows to a 

noninvertible symmetry of the continuum theory 𝒟𝒟 [Oshikawa, Affleck; 
Petkova, Zuber; Frohlich, Fuchs, Runkel, Schweigert; Chang, Lin, Shao, Wang, Yin]

𝐷𝐷 =
1
2
𝒟𝒟𝑒𝑒

2𝜋𝜋𝑖𝑖𝑃𝑃
2𝑁𝑁

𝒟𝒟2 = 1 + 𝜂𝜂 , 𝜂𝜂2 = 1 , 𝜂𝜂𝒟𝒟 = 𝒟𝒟𝜂𝜂 = 𝒟𝒟 , 𝑒𝑒2𝜋𝜋𝑖𝑖𝑃𝑃 = 1

𝐷𝐷 and 𝒟𝒟 satisfy different algebras, 𝐷𝐷2 = 1
2

1 + 𝜂𝜂 𝑇𝑇𝐼𝐼𝐼𝐼𝑖𝑖𝐼𝐼𝐼𝐼.

𝒟𝒟 is an emanant noninvertible symmetry.  It is exact in the IR effective 
theory.  (Not violated even by irrelevant operators.)
On the lattice, only 𝐷𝐷 and 𝑇𝑇𝐼𝐼𝐼𝐼𝑖𝑖𝐼𝐼𝐼𝐼.  In the continuum, 𝑃𝑃 and 𝒟𝒟.

The relation 𝐷𝐷 = 1
2
𝒟𝒟𝑒𝑒

2𝜋𝜋𝜋𝜋𝑃𝑃
2𝑁𝑁  is exact.  No finite 𝑁𝑁 corrections. 14



From the Majorana chain to the Ising 
model – odd 𝐿𝐿 = 2𝑁𝑁 + 1

In this case, no projection is needed. 
A Jordan-Wigner transformation in the doubled Hilbert space �ℋ 
leads to the Ising model with a 𝐷𝐷 defect [Schutz; Grimm, Schutz; 
Grimm; Ho, Cincio, Moradi, Gaiotto, Vidal; Hauru, Evenbly, Ho, Gaiotto, Vidal; 
Aasen, Mong, Fendley]

𝐻𝐻 = −
1
2
�
𝑗𝑗=1

𝑁𝑁

𝑍𝑍𝑗𝑗 −
1
2
�
𝑗𝑗=1

𝑁𝑁

𝑋𝑋𝑗𝑗𝑋𝑋𝑗𝑗+1 −
1
2
𝑋𝑋1𝑌𝑌𝑁𝑁+1

It flows in the IR to the Ising CFT with a noninvertible defect 𝒟𝒟 
[Oshikawa, Affleck; Petkova, Zuber; Frohlich, Fuchs, Runkel, Schweigert; 
Chang, Lin, Shao, Wang, Yin].
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Summary
• UV-translation can lead to an emanant internal symmetry.  Unlike 

an emergent/accidental symmetry, it is exact at low energies – not 
violated by relevant or irrelevant operators.

• Anomalies involving UV-translations are matched by anomalies in 
emanant symmetries.

• Four versions of the lattice Majorana chain flow to the continuum 
Majorana theory with four different defects, NSNS, RR, NSR, and 
RNS.  In each case, a chiral fermion parity symmetry emanates from 
lattice-translation 𝑇𝑇. It is exact in the low-energy theory.

• Summing over the lattice spin structures leads to three bosonic 
lattice models: Ising, ℤ2-twisted Ising, and Ising with a 𝐷𝐷 defect. 

• 𝐷𝐷 is an exact noninvertible symmetry of the lattice model. 
• These lattice models flow to the three continuum Ising CFTs with 

defects (corresponding to 1, 𝜖𝜖,𝜎𝜎). 
• The noninvertible duality symmetry 𝒟𝒟 of the CFT emanates from 𝐷𝐷.



Thank you
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