Irreversibility, QNEC, and defects

Gonzalo Torroba

Centro Atómico Bariloche, Argentina

Collaboration with Horacio Casini, Ignacio Salazar-Landea

Strings 2023, July 2023 Perimeter Institute

Irreversibility of the renormalization group is a key property of nonperturbative QFT.

Goal: find renormalization group charges that partially characterize conformal field theories, and that decrease under the RG.

- Two directions where irreversibility has been developed:
- 1) Irreversibility theorems in unitary relativistic QFT have been established in d=2, 3 and 4 space-time dimensions (C, F, A)
- 2) Irreversibility for defect RG flows, embedded in CFTs. Started with the g-theorem.
 - Framework for generalizing this:
- D-dimensional CFT coupled to d-dimensional planar static defect
- relevant interactions on defect trigger RG flow between UV and IR fixed points. Bulk remains conformal
- QFTs without defect: special case D=d

Overview of irreversibility inequalities

So far, several proofs for different (D, d). Those based on properties of energy-momentum tensor are:

d D	2	3	4	5	• • •
1	reflection positivity for stress tensor	reflection positivity for stress tensor	reflection posi- tivity for stress tensor	reflection positivity for stress tensor	reflection positivity for stress tensor
2	reflection positivity for stress tensor	reflection positivity of dilaton	reflection positivity of dilaton	reflection positivity of dilaton	reflection positivity of dilaton
3		No proof	No proof	No proof	No proof
4			unitarity dila- ton scattering	unitarity dila- ton scattering	unitarity dila- ton scattering

D=d=2: [Zamolodchikov]'s original C-thm; D=d=4: [Komargodski, Schwimmer] (dilaton) Later on: d=2, any D [Jensen, OBannon], d=4, any D: [Wang]. Dilaton methods d=1, D=2: [Friedan, Konechny].

And recently: d=1, any D: [Cuomo, Komargodski, Raviv-Moshe]. Generalized to d=2, any D by [Sachar, Sinha, Smolkin].

In parallel, irreversibility theorems have also been obtained using methods from quantum information theory:

d D	2	3	4	5	• • •
1	positivity of rela- tive entropy	positivity of rela- tive entropy	positivity of rela- tive entropy	positivity of rela- tive entropy	positivity of rela- tive entropy
2	SSA or positivity of relative entropy	SSA + QNEC or positivity of relative entropy	SSA + QNEC or positivity of rela- tive entropy	SSA + QNEC or positivity of rela- tive entropy	SSA + QNEC or positivity of rela- tive entropy
3		SSA	SSA + QNEC	SSA + QNEC	SSA + QNEC
4			SSA	SSA + QNEC	SSA + QNEC

D=d=2 entropic C-thm by [Casini, Huerta]; extended by [Casini, Huerta] to D=d=3 (not available via correlators/dilaton) D=d=4 by [Casini, Teste, GT]. And unifies d=2,3,4 (Markov prop) d=1, any D [Casini, Salazar, GT]; d=2, D=3 [Casini, Salazar, GT]

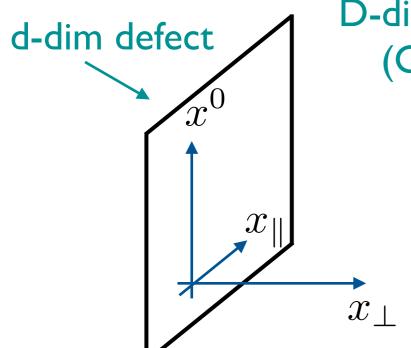
... This covers almost 40 years of developments! But a simple and general understanding is still lacking.

In this talk: we prove an inequality for second derivatives of the Relative Entropy. This establishes the remaining irreversibility thms, and unifies all known theorems for (D, d). [Casini, Salazar, GT, 2023]

A. Key ingredients

QFT setup

D-dimensional CFT with a d-dimensional planar defect



D-dim bulk (CFT)

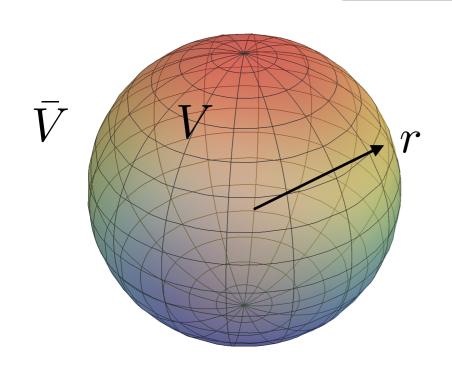
- the defect is conformal in the UV
- turn on relevant deformations on the defect

$$S = S_{UV,CFT} + \int d^d x \, g\mathcal{O}$$

- triggers an RG flow, which ends on a different IR conformal defect
- the bulk does not flow

Particular case: d=D, no bulk. Gives QFT RG flow without defects

Entanglement entropy



density matrix
$$\rho_r = \mathrm{tr}_{\bar{V}}|0\rangle\langle 0|$$

von Neumann
$$S(r) = -\mathrm{tr}_V(\rho_r \, \log \rho_r)$$
 entropy

Can probe RG flow by

$$mr \ll 1 \text{ (UV)} \Rightarrow mr \gg 1 \text{ (IR)}$$

• Structure near a fixed point, first without defects (D=d):

$$S(r) = S_{local} + S_{non-local}$$

$$S_{local}(r) = \mu_{d-2}r^{d-2} + \mu_{d-4}r^{d-4} + \dots$$
 UV divergent

$$S_{non-local}(r) = \begin{cases} (-1)^{\frac{d}{2}-1}4A\log\frac{r}{\epsilon} & d \text{ even} \\ (-1)^{\frac{d-1}{2}}F & d \text{ odd} \end{cases}$$
 universal

RG irreversibility: decrease of A or F; proved for d=2,3,4

The universal terms can also be isolated from the partition function on the sphere (free energy in de Sitter), or from the Weyl anomaly if d even.

For d-dim conformal defect in a D-dim CFT, there are additional terms:

$$S(r) = \mu_{D-2}r^{D-2} + \mu_{D-4}r^{D-4} + \dots + \tilde{\mu}_{d-2}r^{d-2} + \tilde{\mu}_{d-4}r^{d-4} + \dots$$

$$+ \begin{cases} (-1)^{\frac{D-2}{2}} 4A \log \frac{r}{\epsilon} & D \text{ even} \\ (-1)^{\frac{D-1}{2}} F & D \text{ odd} \end{cases} + \begin{cases} (-1)^{\frac{d-2}{2}} 4\tilde{A} \log \frac{r}{\epsilon} & d \text{ even} \\ (-1)^{\frac{d-1}{2}} \tilde{F} & d \text{ odd} \end{cases}$$

For defect RG flows, quantities with tildes flow. One can try to prove irreversibility theorems for the universal \tilde{F}, \tilde{A} , but in general this does not work (exception: D=d+1).

[Jensen, O'Bannon]
[Kobayashi, Nishioka, Sato, Watanabe]

One reason: the defect contributes nonzero energy. The universal term in the EE no longer coincides with the one in the free energy. We should look at the quantum-information analog of free energy.

Relative entropy

For two density matrices σ and ρ , the relative entropy is

$$S_{rel}(\rho|\sigma) = \operatorname{tr}(\rho\log\rho - \rho\log\sigma)$$

Introducing the modular Hamiltonian $H = -\log \sigma$

$$S_{rel}(
ho|\sigma) = \operatorname{tr}(
ho\log
ho -
ho\log\sigma + \sigma\log\sigma - \sigma\log\sigma)$$

$$= \langle H \rangle_{\rho} - \langle H \rangle_{\sigma} - (S_{\rho} - S_{\sigma})$$

$$= \Delta \langle H \rangle - \Delta S \qquad \longleftarrow \text{ difference of "free energies"}$$

For irreversibility in QFT, we will compare two density matrices:

 $\sigma = vacuum density matrix for UV fixed point$

 $\rho = vacuum density matrix for QFT w/relevant deformations$

The modular Hamiltonian for a CFT on a sphere is

$$H_{\sigma} = \int_{\Sigma} d^{D-1}x \, \eta^{\mu} \xi^{\nu} \, T_{\mu\nu}$$

-conf. transf. of Rindler Hamiltonian

- valid also with conformal defects

 η^{μ} : unit normal to Cauchy surface Σ

$$\xi^{\nu}=rac{\pi}{R}(R^2-(x^0)^2-ec{x}^2,-2x^0x^i)$$
 Killing vector, R: radius of sphere

Note: $\langle H \rangle_{\rho}$ depends on choice of Cauchy surface. Reason: states evolve with different action.

- for null Σ , $\langle H \rangle_{\rho} \sim R^{D-2}$ comparable to EE.We choose this limit. It contributes a universal term, proportional to energy of defect. Then

$$-\lim_{R\to\infty} S_{\rm rel}(R) = \Delta \mu'_{d-2} R^{d-2} + \Delta \mu'_{d-4} R^{d-4} + \dots + \begin{cases} (-)^{\frac{d-2}{2}} 4 \Delta A' \log(R/\epsilon) & d \text{ even} \\ (-)^{\frac{d-1}{2}} \Delta F' & d \text{ odd} \end{cases}$$

Strong subadditivity and Markov property

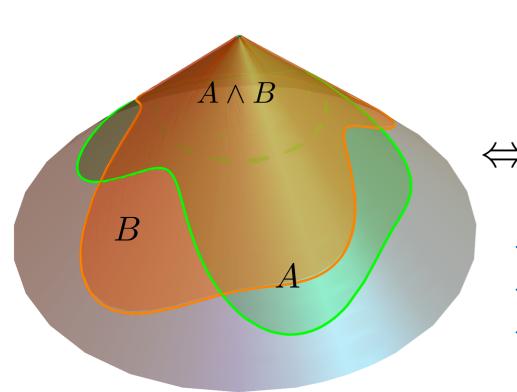
Key property of unitary quantum mechanics: strong subadditivity of the EE

[Lieb, Ruskai, 1973]

$$S(A) + S(B) \ge S(A \cup B) + S(A \cap B)$$

For a CFT and for regions with boundary in null cone, Markov property:

[Casini, Testé, GT, 2017]



$$S(A \cup B) + S(A \cap B) = S(A) + S(B)$$

 $\Leftrightarrow \log \rho_{A \cup B} = \log \rho_A + \log \rho_B - \log \rho_{A \cap B}$

√This is called a quantum Markov state

√mod Hamiltonian local on null surfaces

√Tracing out a subsystem becomes a reversible process

Combining SSA w/Markov, we obtain strong superadditivity

$$S_{\rm rel}(A) + S_{\rm rel}(B) \le S_{\rm rel}(A \cup B) + S_{\rm rel}(A \cap B)$$

B. Proof of irreversibility inequality

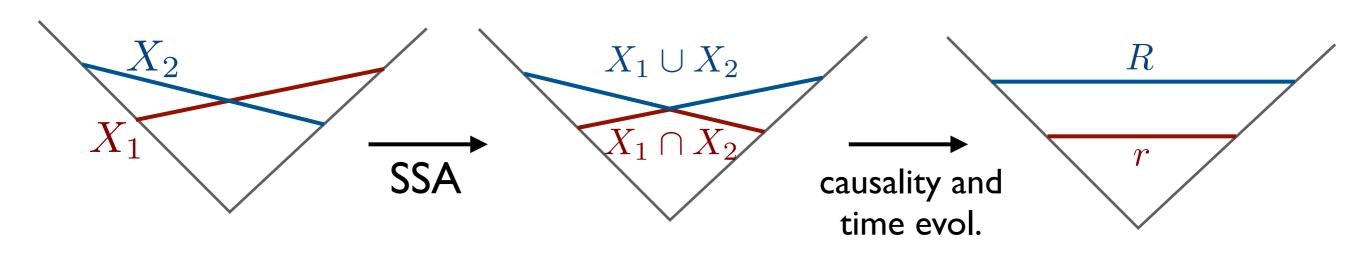
We will explain the proof for a d=2 defect, in D-dim CFT.

General case: [Casini, Salazar, GT, 2023] and talk at IFQ next week

The entropic C-theorem

[Casini, Huerta, '04, '12]

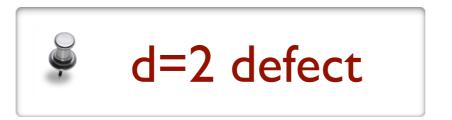
Warm-up without defect, ie D=d=2



$$\Delta S(X_1) + \Delta S(X_2) \ge \Delta S(X_1 \cup X_2) + \Delta S(X_1 \cap X_2) = \Delta S(R) + \Delta S(r)$$

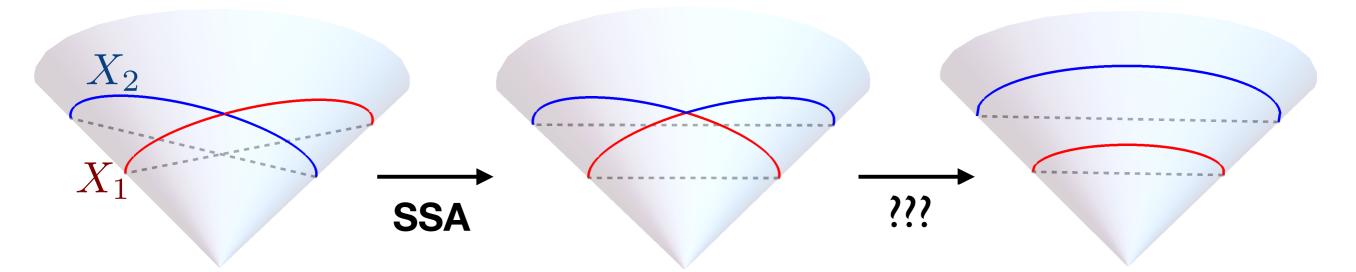
$$2\Delta S(\sqrt{rR}) \geq \Delta S(R) + \Delta S(r)$$
 . When $r \to R \Rightarrow (R\Delta S'(R))' \leq 0$

implies the decrease of the central charge $C_{IR} < C_{UV}$



Let's try the same for a d=2 defect, in a D-dim CFT bulk.

The problem is that now the spheres extend into the bulk, and their causal union and intersection no longer give causal diamonds of spheres.



→New ingredient: use QNEC in the bulk (conformal), to bound the entropy of union and intersection by entropies of diamonds (spheres)

As we will see, this requires the relative entropy:

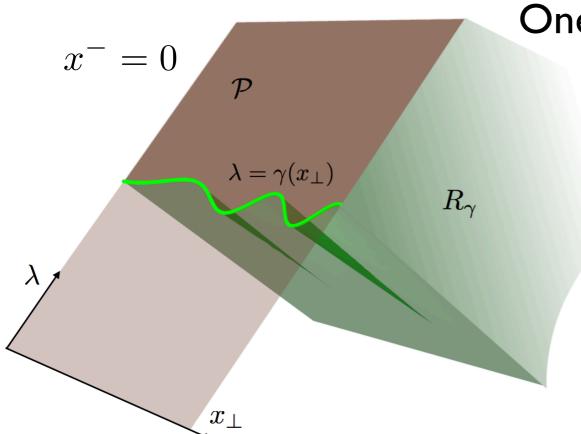
$$S_{\text{rel}}(X_1) + S_{\text{rel}}(X_2) \le S_{\text{rel}}(X_1 \cup X_2) + S_{\text{rel}}(X_1 \cap X_2) \le S_{\text{rel}}(R) + S_{\text{rel}}(r)$$

Then we would get defect irreversibility,

$$(RS'_{\rm rel}(R))' \ge 0$$

[Bousso, Fisher, Leichenauer, Wall]
[Balakrishnan, Faulkner, Khandker, Wang]
[Ceyhan, Faulkner]

Originated from quantum focusing conjecture, but is valid in general QFT. Simplest setup: deformations on null plane



One-parameter deformation of null boundary:

$$x^{+} = \gamma_s(x_{\perp}) = \gamma(x_{\perp}) + a(x_{\perp})s$$
$$(a(x_{\perp}) \ge 0)$$

Relative entropy between σ (vacuum) and ρ (excited state) is convex under null defs

$$\frac{d^2 S_{\rm rel}(\gamma_s)}{ds^2} \ge 0$$

QNEC is also valid on light-cone if we have a CFT. It is valid in the CFT bulk of the theory with defect.

$$\Rightarrow [S_{\text{rel}}(R) - S_{\text{rel}}(X_1 \cup X_2)] - [S_{\text{rel}}(X_1 \cap X_2) - S_{\text{rel}}(r)] \ge 0$$

and this establishes the irrev. inequality for d=2 and all D.

C. Conclusions

The result for general (d,D) is $RS''_{\rm rel}(R) - (d-3)S'_{\rm rel}(R) \ge 0$

[Casini, Salazar, GT, 2023]

- The result is independent of D; depends only on defect dim. d
- The theory on defect is nonlocal (it interacts w/bulk). It's remarkable that we get the same inequality as with no bulk (d=D)
- Relative entropy appears, required by QNEC.
- Implies irreversibility of defect RG flows for d=2,3,4 and all D.

Future directions:

- 1) Irreversibility for d>4? Requires new tools.
- 2) Theories with less symmetries? Interesting for condensed matter
- 3) Relation to non-entropic results?