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Questions

Focus on asymptotically dS
spacetime from a global
perspective.

▸ What is the Hilbert space for gravity in such a spacetime?

▸ Gravity localizes information unusually. How does
holography of information work in such a spacetime?
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Wavefunctionals

States can be
represented as
wavefunctionals on the
late-time slice.

Ψ[g, χ] assigns an amplitude to a configuration of

metric on a spacelike slice g

and
matter fields χ
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Vacuum wavefunctional
▸ We understand the Euclidean vacuum state well.

∣0⟩↔ Ψ0[g, χ]

▸ Computed using the Hartle-Hawking proposal

[Hartle,Hawking, 1983]

▸ Also computed via analytic continuation from AdS

ZCFT[g, χ]→ Ψ0[g, χ]
[Maldacena, 2001]
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Constraints of gravity

Wavefunctionals in quantum
gravity obey

HΨ[g, φ] = 0; HiΨ[g, φ] = 0.

Procedure: Solve for the Hilbert space by finding a complete
basis of solutions to the WDW equation.
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WDW equation
Explicitly,

H = 2κ2g−1(gikgjlπ
klπij − 1

d − 1
(gijπ

ij)2) − 1
2κ2 (R − 2Λ)

+Hmatter +Hint,

Hi = −2gijDk
πjk
√

g
+Hmatter

i ,

   
    That seems

hard.
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Simplifying the WDW equation

▸ In the regime
Λ ≫ R; Λ ≫ Vmatter

the WDW equation turns out to be tractable.

The limit Λ ≫ R focuses us on
the late-time slice.
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Late-time limit

▸ Solving WDW at “large volume” gives us “late time”
behaviour of the state.

▸ Sufficient to understand Hilbert space. (cf. asymptotic
quantization).

▸ Insufficient for bulk dynamics/“finite-time physics”.

I+

Sd
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Solution
At large volume all solutions of the WDW equation take the form

ΨÐ→eiS[g,χ]Z [g, χ]

see AdS solutions by Freidel (2008),Regado, Khan, Wall (2022)

1. S is a divergent universal phase factor.
2. Z [g, χ] is diff invariant and almost Weyl invariant

Ω
δZ [g, χ]
δΩ(x) = Ad[g]Z [g, χ].

Ad is an imaginary local function of g in even d for dSd+1.
3.

∣Z [g, χ]∣2

is Weyl invariant.
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Phase factor

The phase factor S contains terms familiar from holographic
renormalization.

S = −(d − 1)
κ2 ∫

√
gddx + 1

2κ2(d − 2) ∫
√

gRddx + . . .

[Papadimitriou, Skenderis, 2004]

It comprises integrals of local densities.

It doesn’t depend on details of state.

Cancels out in ∣Ψ[g, χ]∣2.
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Expansion of Z [g, χ]
After Weyl transformation to frame

gij = δij + κhij ,

Expand
Z [g, χ] = exp[∑

n,m
κnGn,m]

with

Gn,m = ∫ dy⃗dz⃗ Gi⃗ j⃗
n,m(y⃗ , z⃗)hi1j1(z1) . . .hin jn(zn)χ(y1) . . . χ(ym),

Coefficient fns obey same Ward identities as CFT correlators.

Gi⃗ j⃗
n,m(y⃗ , z⃗) ∼ ⟨T i1j1(y1) . . .T in jn(yn)φ(z1) . . . φ(zm)⟩connected

CFT ,

“CFT” is not unitary; not even necessarily local.
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Hartle-Hawking state and other states

  
  This looks
  familiar! Ψ0 = eiS exp[∑

n,m
κnGn,m]

[Pimentel, 2013]

[Hartle, Hawking, Hertog, 2008]

Not just the Hartle-Hawking state but all states have this form.

Interactions do not constrain precise form of Gn,m beyond
conformal invariance of coefficient fns.
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Solution space as theory space

List of correlators{Gi⃗ j⃗
n,m(y⃗ , z⃗)}Ð→WDW solution

But list of correlators can be thought of as defining a “theory”.

Solution Space Theory Space

Caution: Additional constraints on allowed states come from
normalizability.
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Small fluctuations basis for states

Starting with Gn,m for H.H. state,

Gλn,m = (1 − λ)Gn,m + λG̃n,m

Then

∂Ψλ[g, χ]
∂λ

∣
λ=0 = ∑

n,m
κnδGn,mΨ0[g, χ]

= ∑
n,m

κn ∫ dx⃗ Gi⃗ j⃗
n,m(y⃗ , z⃗)hi1j1(z1) . . .hin jn(zn)χ(y1) . . . χ(ym)Ψ0[g, χ]
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Summary: solution space

∣Ψ⟩ = ∑
n,m

κn ∫ dy⃗dz⃗ δGi⃗ j⃗
n,m(y⃗ , z⃗)hi1j1(z1) . . .hin jn(zn)χ(y1) . . . χ(ym)∣0⟩

Euclidean vacuum

Metric fluctuation

Matter fluctuation

Smearing func-
tions satisfy CFT
Ward identities
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Higuchi states

Ψ = ∑
n,m

κn ∫ dx⃗ δGi⃗ j⃗
n,m(y⃗ , z⃗)hi1j1(z1) . . .hin jn(zn)χ(y1) . . . χ(ym)Ψ0

▸ The Ward identities tell us

δGn,m ≠ 0 Ô⇒ δGn+1,m ≠ 0.

▸ When κ→ 0, Ward identities do not relate δGn,m to δGn+1,m.

∣Ψng⟩ = ∫ dy⃗f (y1, . . .yn)χ(y1) . . . χ(yn)∣0⟩

where f has the symmetries of a conformal correlator.

This can be shown to match a previous construction of the
state space by Higuchi when κ→ 0.

[Higuchi, 1991]

[Marolf, Morrison, 2008]

[Anninos, Denef, Monten, Sun, 2017]

[Chandrasekaran,Longo,Penington,Witten, 2022]
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Proposal for norm

We propose

(Ψ,Ψ) = 1
vol(diff×Weyl) ∫ DgDχ ∑

n,m,n′,m′
κn+n′δG∗n,mδGn′,m′ ∣Z0[g, χ]∣2

Proposal is not unique. But natural and simple.

18 / 29



Fixing gauge

Fix gauge ∶ ∑
i
∂igij = 0; δijgij = d

Gauge choice leaves behind residual global transformations.

translations ∶ ξi = αi ;

rotations ∶ ξi = M ijx j

dilatations ∶ ξi = λx i

SCTs ∶ ξi = (2(β ⋅ x)x i − x2β i) + v i
j β

j

SCTs are corrected by a metric-dependent term for d > 2.
[Hinterbichler, Hui, Khoury, 2013]

[Ghosh, Kundu, S.R., Trivedi, 2014]
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Fixing residual gauge freedom

χ(∞)

χ(0)

. . .

χ(x6)

χ(1)

hij(x5)

χ(x4)

Fix residual transformations by
fixing positions of “vertex
operators” in δGn,m.

x1 = 0, x2 = 1 x3 =∞

Finally

(Ψ,Ψ) = ∑
n,m,n′,m′

κn+n′⟪δG∗n,m δGn′,m′⟫

= ∑
n,m,n′,m′

κn+n′ ∫ DgDχδ(g.f)∆′
FP∣Z0[g, χ]∣2δG∗n,m δGn′,m′

Normalizable states require at least two insertions (2 + 2 > 3).
H.H. state is not naively normalizable.

20 / 29



Higuchi’s norm

χ(∞)

χ(0)

. . .

χ(x6)

χ(1)

hij(x5)

χ(x4)

In nongravitational limit, instead
of fixing three points → divide
by the volume of the conformal
group.

(Ψng,Ψng)∝
1

vol(SO(d + 1,1)) lim
κ→0

⟪δG∗n,m δGn′,m′⟫

= 1
vol(SO(d + 1,1))⟨Ψng∣Ψng⟩QFT

Matches Higuchi’s proposal for the norm as κ→ 0 and provides
gravitational corrections.

[Higuchi, 1991]

[Marolf, Morrison, 2008]

[Chandrasekaran,Longo,Penington,Witten, 2022]
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Cosmological correlators

We wish to understand
“cosmological correlators” on
the late-time slice.

⟨χ(x1) . . . χ(xn)⟩

As written, expression does not commute with the constraints.

We propose interpretation as gauge-fixed operators

⟪Ψ∣χ(x1) . . . χ(xn)∣Ψ⟫CC = ∫ ∣Ψ∣2χ(x1) . . . χ(xn)δ(g.f)∆′
FPDgDχ
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Symmetries of cosmological correlators
Residual gauge transformations turn into symmetries of
cosmological correlators.

Translations/Dilatations:

⟪Ψ∣χ(λx1 + v) . . . χ(λxn + v)∣Ψ⟫CC = λ−n∆⟪Ψ∣χ(x1) . . . χ(xn)∣Ψ⟫CC

Rotations:
⟪Ψ∣χ(M ⋅ x1) . . . χ(M ⋅ xn)∣Ψ⟫CC = ⟪Ψ∣χ(x1) . . . χ(xn)∣Ψ⟫CC

SCTs relate cosmological correlators of different orders.

All states display the symmetries of the H.H. state although the
precise values of cosmological correlators depend on the state.
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Holography of information
Gravity localizes information unusually.

[Laddha, Prabhu, S.R., Shrivastava, 2020]

[Marolf, 2006–13]

Asymptotically flat space Asymptotic AdS

▸ Follows from analysis of gravitational constraints.

▸ Helps understand why gravitational theories are
holographic.
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Holography of information in dS

In dS, cosmological correlators in an arbitrarily small region fix
cosmological correlators everywhere.

⟪Ψ∣χ(λx1+v) . . . χ(λxn+v)∣Ψ⟫CC = λ−n∆⟪⟨Ψ∣χ(x1) . . . χ(xn)∣Ψ⟫CC
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Holography of information and cosmological
correlators

⟪Ψ1∣χ(x1) . . . χ(xn)∣Ψ1⟫CC = ⟪Ψ2∣χ(x1) . . . χ(xn)∣Ψ2⟫CC∀xi ∈R,
Ô⇒ ⟪χ(x1) . . . χ(xn)∣Ψ1⟫CC = ⟪Ψ2∣χ(x1) . . . χ(xn)∣Ψ2⟫CC∀xi ,

In sharp contrast to QFT.
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Nongravitational limit
Holography of information persists in the nongravitational limit.

if ∀xi ∈R,
⟪Ψng,1∣χ(x1) . . . χ(xn)∣Ψng,1⟫CC = ⟪Ψng,2∣χ(x1) . . . χ(xn)∣Ψng,2⟫CC

then ∀xi ,

⟪Ψng,1∣χ(x1) . . . χ(xn)∣Ψng,1⟫CC = ⟪Ψng,2∣χ(x1) . . . χ(xn)∣Ψng,2⟫CC,

∣Ψng⟩ = ∫ dxi f (x1, . . .xn)χ(x1) . . . χ(xn)∣0⟩
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Holography of information

AdS and flat space dS

The complement of a bounded region has all information about
the state.
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Conclusion

▸ Hilbert space: Solutions of WDW-eqn (in the large-volume
limit) are of the form eiSZ [g, χ], where ∣Z [g, χ]∣2 is a diff
and Weyl-invariant functional.

▸ All allowed states are of this form, not just the vacuum.
(Vacuum itself does not appear normalizable.)

▸ Symmetries. Cosmological correlators, after gauge-fixing,
are covariant under scaling, rotations, translations in all
states. SCTs relate different cosmological correlators.

▸ Holography of information: Specifying cosmological
correlators in an arbitrarily small region specifies them
everywhere. Sharp contrast with QFT.
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Thank you
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Appendix
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Gauge-fixing for cosmological correlators

⟪Ψ1∣χ(x1) . . . χ(xn)∣Ψ2⟫CC = ∫ Ψ∗
1Ψ2χ(x1) . . . χ(xn)δ(g.f)∆′

FPDgDχ

gives unambiguous prescription for the matrix elements.

∃ gauge invariant operator with the same matrix elements.

When κ→ 0,

Ĉ = ∫ [dU]U†χ(x1) . . . χ(xn)U

independent of gauge choice.

At nonzero κ, gauge choice
matters. Gauge-fixing Ð→
setting our reference frame as
observers.
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Weyl transformation of variables

We are interested in Z [g, χ] in the regime where

gphys
ij = 4ω2

(1 + ∣x ∣2)2 (δij + κhij),

with large ω

Since ∣Z [g, χ]∣2 is diff-and-Weyl invariant, transform to frame
where

gij = δij + κhij
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Explicit constraints

Explicitly,

H = 2κ2g−1(gikgjlπ
klπij − 1

d − 1
(gijπ

ij)2) − 1
2κ2 (R − 2Λ)

+Hmatter +Hint,

Hi = −2gijDk
πjk
√

g
+Hmatter

i ,

These constraints are equivalent to the Einstein equations. But
we are imposing

HΨ =HiΨ = 0

Different from solving

Gµν = 8πG⟨Tµν⟩
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