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In ordinary quantum field theory without gravity in a spacetime M,
we can associate an algebra AU of observables to any open set
U ⊂ M:



There are a few problems with this notion in the presence of
gravity. I will point out three. The most obvious problem is that
since spacetime fluctuates, it is in general difficult to describe a
spacetime region in quantum gravity. We do not have the same
freedom in doing this that we have in the absence of gravity.



A possibly deeper problem concerns background independence. In
ordinary quantum field theory, the algebra AU that we associate to
an open set U ⊂ M depends on M and U , of course, but it does
not depend on the state of the quantum fields. What would be the
analog of that in gravity? In gravity, the spacetime M is part of
what the fields determine, so an algebra that doesn’t depend on
the state of the quantum fields should be defined universally,
independently of M. By contrast, anything we define as the
algebra of the observables in a region U ⊂ M will depend on the
choice of M and U .



A third problem concerns the question of why we want to define an
algebra in the first place – what is this algebra supposed to mean?
In ordinary quantum mechanics, an observer is external to the
system and we are quite free to make what assumptions we want
about the capability of the observer. In quantum field theory
without gravity, we can imagine an observer who can probe a
system at will but only in a specified region U ⊂ M, and that is
the context in which it makes sense to consider the algebra AU . In
gravity, at least in a closed universe or in a typical cosmological
model, there is no one who can probe the system from outside so
an algebra only has operational meaning if it is the algebra of
operators accessible to some observer.



Following Unruh (1976) and many others, I will model an observer
by a timelike worldline (which I will take to be a geodesic) and I
will assume that what the observer can measure are the quantum
fields along the worldline. According to the “timelike tube”
theorem (Borchers 1961; Araki 1963; Strohmaier 2000; Strohmaier
and EW 2023), in quantum field theory without gravity, the
algebra of operators along the worldline is equivalent to the algebra
of operators in a certain open set:

So the algebra of operators along a timelike geodesic is a
reasonable substitute for what we usually consider in the absence
of gravity, and makes more sense when gravity is included.



Some relevant papers on algebras in quantum gravity:

Algebras of operators outside a black hole horizon

Leutheusser and Liu (2021)

EW (2021), Chandrasekharan, Penington, and EW (2022)

Algebra for a static patch in de Sitter space:

(*) Chandrasekharan, Longo, Penington, and EW (2022)

In JT gravity with negative cosmological constant

Penington and EW (2023), Kolchmeyer (2023)

In a general diamond-like region

Jensen, Sorce, and Speranza (2023).



My starting point for today will be to reinterpret the CLPW paper
on the static patch in de Sitter space. In that paper, the goal was
to define an algebra for the static patch. Because of the
symmetries of the static patch, it was necessary to assume that
there was an observer in the static patch: then one could define an
algebra by “gravitationally dressing” an operator to the observer’s
worldline. This logic does not apply for more general spacetimes:
in a generic spacetime with less symmetry, one could
“gravitationally dress” an operator to a feature of the spacetime,
or of the state. Today we will consider the same construction with
a different motivation: background independence.



We expect that in a full theory of quantum gravity, an observer
cannot be introduced from outside but must be described by the
theory. What it means then to assume the presence of an observer
is that we define an algebra that makes sense in a subspace of
states in which an observer is present. We don’t try to define an
algebra that makes sense in all states.



First let us describe the situation in the absence of gravity. The
observer propagates in a spacetime M on a geodesic γ:

The worldline is parametrized by proper time τ . The observer
measures along γ, for example, a scalar field φ, or the
electromagnetic field Fµν , or the Riemann tensor Rµναβ , as well as
their covariant derivatives in normal directions.



Focus on a particular observable, say φ(x(τ)) for a scalar field φ; I
will abbreviate this as φ(τ). When we take gravity to be dynamical,
we have to consider that the same worldline can be embedded in a
given spacetime in different ways, differing by τ → τ + constant:

So φ(τ) isn’t by itself a meaningful observable: we need to
introduce the observer’s degrees of freedom and define τ relative
to the observer’s clock.



In a minimal model, we equip the observer with a Hamiltonian
Hobs = mc2 + q, and a canonical variable p = −i d

dq . However, it
turns out that it is better to assume that the observer energy is
bounded below, say q ≥ 0 (so m is the observer’s rest mass). We
then only allow operators that preserve this condition, so for
example e ip, which does not preserve q ≥ 0, should be replaced
with Πe ipΠ, where Π = Θ(q) is the projection operator onto q ≥ 0.



We now want to allow only operators that commute with

Ĥ = Hbulk + Hobs,

where Hbulk is (any) gravitational constraint operator that
generates a shift of τ along the worldline. Since

[Hbulk, φ(τ)] = −iφ̇(τ),

we need
[q, φ(τ)] = iφ̇(τ),

which we can achieve by just setting

τ = p

or more generally
τ = p + s

for a constant s.



So a typical allowed operator is φ(p + s), or more precisely

φ̂s = Πφ(p + s)Π = Θ(q)φ(p + s)Θ(q).

In addition to these operators (with φ possibly replaced by any
local field along the worldline such as the electromagnetic field or
the Riemann tensor) there is one more obvious operator that
commutes with Ĥ, namely q itself. So we define an algebra Aobs

that is generated by the φ̂s as well as q.



The setup hopefully sounds “background independent,” since we
described it without picking a background. However, background
independence really depends on interpreting the formulas properly.
We will not get background independence if we interpret φ̂s and q
as Hilbert space operators. To get a Hilbert space on which φ̂s and
q act, we have to pick a spacetime in M which the observer is
propagating. Then we won’t have background independence. The
algebras for different M’s are inequivalent representations of the
same underlying operator product algebra. To get background
independence, we have to think of Aobs as an operator product
algebra, rather than an algebra of Hilbert space operators.



In the absence of gravity, we would characterize the objects φ(τ)
by their universal short distance singularities:

φ(τ)φ(τ ′) ∼ C (τ − τ ′ − iε)−2∆ + · · · .

This characterization does not require any knowledge about the
quantum state. After coupling to gravity and including the
observer and the constraint, the short distance expansion in powers
of τ − τ ′ becomes an expansion in 1/q. We characterize Aobs

purely by the universal short distance or 1/q expansion of operator
products. With that understanding, Aobs is
background-independent.



By a “state” of the observer algebra Aobs, we mean a linear
function O → 〈O〉 which

(1) is positive, in the sense that 〈OO†〉 ≥ 0 for all O ∈ Aobs

(2) is consistent with all universal OPE relations.

(This is analogous to a definition given by Hollands and Wald in
quantum field theory in a fixed curved spacetime background.)



If M is any spacetime in which the observer is found, H is the
Hilbert space that describes the fields in M together with the
observer, and Ψ ∈ H, then

O → 〈Ψ|O|Ψ〉

is a state of the algebra Aobs, by that definition. Though these
definitions make sense for any M, they are most interesting when,
because of black hole or cosmological horizons, the part of the
universe that the observer can see does not include a complete
Cauchy hypersurface.



There is a very special case that turns out to be important. This is
the case that M is an empty de Sitter space, with some positive
value of the effective cosmological constant.

The green region is called a static patch, because it is invariant
under a particular de Sitter generator H that advances the proper
time of the observer.



In the absence of gravity, there is a distinguished de Sitter invariant
state ΨdS such that correlation functions in this state are thermal
at the de Sitter temperature TdS = 1/βdS (Gibbons and Hawking;
Figari, Nappi, and Hoegh-Krohn). For example, this means that
two point functions 〈ΨdS|φ(τ)φ′(τ ′)|ΨdS〉 have two key properties:

(1) Time translation symmetry:

〈ΨdS|φ(τ + s)φ′(τ ′ + s)|ΨdS〉 = 〈ΨdS|φ(τ)φ′(τ ′)|ΨdS〉.

(2) The KMS condition, which says roughly:

〈ΨdS|φ(τ)φ′(0)|ΨdS〉 = 〈ΨdS|φ′(0)φ(τ − iβ)|ΨdS〉.

(A precise statement involves holomorphy of the correlation
function in a strip in the complex plane.)



Including gravity and the observer, we define a special state in
which the observer energy has a thermal distribution at the de
Sitter temperature

Ψmax = ΨdSe
−βdSq/2

√
βdS,

and we replace operators φ(τ) by “gravitationally dressed”
operators φ̂s = Πφ(p + s)Π. Then a straightforward computation
shows that

(1′) We still have time-translation symmetry

〈Ψmax|φ̂s φ̂′s′ |Ψmax〉 = 〈Ψmax|φ̂′s+c φ̂
′
s′+c |Ψmax〉, c ∈ R.

(2′) The KMS condition simplifies:

〈Ψmax|φ̂s φ̂′s′ |Ψmax〉 = 〈Ψmax|φ̂′s′ φ̂s |Ψmax〉.



Condition (2′) tells us that if, for any a ∈ Aobs, we define

Tr a = 〈Ψmax|a|Ψmax〉,

then the function Tr does have the algebraic property of a trace:

Tr ab = Tr ba, a, b ∈ Aobs.

This function has the property that Tr a†a > 0 for all a 6= 0,
meaning in particular that it is “nondegenerate.” Note that if
Ψmax is normalized then

Tr 1 = 1.



Let HdS be the Hilbert space that we get by quantizing fields in de
Sitter space (in perturbation theory). It is important to understand
what HdS describes and what it doesn’t describe. There are states
in HdS with any number of graviton excitations, but not a number
of them of order 1/~. An ~-independent number of graviton
excitations produces a back reaction on the geometry that is of
order ~ – or order G . HdS doesn’t describe states with an O(1)
change in the geometry, only an O(G ) change.



Let Ψ be any state in HdS and consider the function a→ 〈Ψ|a|Ψ〉,
a ∈ Aobs. Roughly speaking, because Aobs has the nondegenerate
trace Tr, we can hope that there is a “density matrix” ρ ∈ Aobs

such that
〈Ψ|a|Ψ〉 = Tr aρ, a ∈ Aobs.

Actually, such a ρ does exist but not as an element of the universal
OPE algebra Aobs that we’ve defined so far. We really have to
replace Aobs by its completion Aobs,dS among operators on HdS.
Then ρ exists as an operator in (or more precisely, in general
affiliated to) Aobs,dS. In this setup, a density matrix is defined as a
positive operator ρ in (or affiliated to) Aobs,dS such that

Tr ρ = 1.

There is such a ρ for each Ψ ∈ HdS.



The definition of the trace makes it clear that the density matrix of
the state Ψmax is σmax = 1, since to satisfy

〈Ψmax|a|Ψmax〉 = Tr aσmax ≡ 〈Ψmax|aσmax|Ψmax〉,

we set
σmax = 1.

This means that Ψmax is “maximally mixed,” similar to a
maximally mixed state in ordinary quantum mechanics whose
density matrix is a multiple of the identity.



Once we know that every state has a density matrix, we can define
entropies as well. The von Neumann entropy of a density matrix ρ
is as usual

S(ρ) = −Tr ρ log ρ.

In ordinary quantum mechanics, a maximally mixed state has a
density matrix that is a multiple of the identity, and it has the
maximum possible von Neumann entropy. The analog here is
Ψmax, with density matrix σmax = 1. It is clear that

S(σmax) = −Tr 1 log 1 = 0,

and by imitating an argument that in ordinary quantum mechanics
proves that a maximally mixed state has maximum possible
entropy, one can prove that every other density matrix ρ 6= 1 has
strictly smaller entropy:

S(ρ) < 0.



Thus, the system consisting of an observer in a static patch in de
Sitter space has a state of maximum entropy

Ψmax = ΨdSe
−βdSq/2

√
βdS,

consisting of empty de Sitter space with a thermal distribution of
the observer energy. Why did this happen?



The original argument that empty de Sitter space has maximum entropy
is due to Bousso (2000), who argued that this must be true, based on
the Second Law of Thermodynamics, because the static patch is empty
in the far future:



The original argument that empty de Sitter space has maximum entropy
is due to Bousso (2000), who argued that this must be true, based on
the Second Law of Thermodynamics, because the static patch is empty
in the far future:

In the present context, we’ve defined the static patch by the presence of
the observer, so by definition the observer doesn’t leave the static patch
even in the far future. But we can expect in the far future that the
observer will be in thermal equilibrium with the bulk quantum fields, and
that is what we see in the state Ψmax. So the maximum entropy state
that we found is the one suggested by Bousso’s argument.



It is possible to show (CLPW 2022) that entropy defined as I have
explained agrees up to an additive constant independent of the
state with the usual definition of the generalized entropy

Sgen =
A

4G
+ Sout,

for a suitable class of semi-classical states Ψ ∈ HdS. (The
argument involves comparing to a description of the generalized
entropy by Wall (2011).) The constant discrepancy is simply that
in this approach the maximum entropy is defined to be 0, rather
than SdS = AdS/4G as usual. So SdS has been subtracted from all
entropies. A limitation: in this comparison of the entropy defined
algebraically to the generalized entropy, we are only seeing
contributions of O(1), not O(1/G ), from the A/4G term. It would
be much nicer to eliminate this restriction.



I will conclude by explaining how I think this might work, but this
will be speculative. First of all, recall the definition of relative
entropy. The relative entropy between two density matrices ρ, σ is

S(ρ|σ) = Tr ρ(log ρ− log σ).

If we take σ to be the density matrix of maximum entropy
σ = σmax = 1, then we see

S(ρ) = −S(ρ|σmax).



We can reinterpret empty de Sitter space as the Hartle-Hawking no
boundary state ΨHH, restricted to the de Sitter spacetime. (Here
we actually want a version of the Hartle-Hawking state for
spacetimes with an observer.) I want to assume that ΨHH makes
sense for arbitrary spacetimes in which the observer might be
found.



Under this assumption, let M be any spacetime in which the
observer may be, with corresponding Hilbert space HM . Let ρ be
the density matrix for an arbitrary state Ψ ∈ HM , and let σHH be
the density matrix for ΨHH . Then a possible definition of entropy is

S(ρ) = −S(ρ|σHH).

As will be clear, this definition involves only one arbitrary additive
constant, independent of the spacetime.



In one simple situation, one can check that this definition of
entropy is sensible. Consider a theory that has many de Sitter
vacua Mα with different values of the cosmological constant and
therefore different horizon areas Aα, and different Hilbert spaces
Hα. Each Hα has a maximum entropy state Ψα

max with density
matrix σαmax = 1|Hα . The Hartle-Hawking state, in the
approximation of considering only these spacetimes, is

ΨHH =
1√
Z

∑
α

eA
α/8GΨα

max.

The density matrix σHH, projected to Hα, is

σHH|Hα =
1

Z
eA

α/4Gσαmax =
1

Z
eA

α/4G1|Hα .

Using the relative entropy formula, the entropy of the maximum
entropy state of Mα is

S = −S(σαmax|σHH) =
Aα

4G
− logZ ,

which is the standard result except for the α-independent constant
− logZ .



If we consider O(1) perturbations around the empty state of Mα,
we get the expected

S =
Âα

4G
+ Sout − logZ .

Here Âα is the corrected horizon area, with back reaction taken
into account.


