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Dual resonance

* In a QFT, we build amplitudes as the sum of channels of different topologies:

< L

s-channel t-channel
(annihilation) (scattering)

* However, in string theory, the two topologies are indistinguishable, due to the

worldsheet:

Dual resonance




String amplitudes

* What do string amplitudes do?

* Ultraviolet-complete low-energy physics by taming Planck-
scale pathologies in amplitudes.

* Accomplish this by adding a tower of massive higher-spin
degrees of freedom. (Cannot add just one higher-spin state
without making the problem worse. e.g.. CEMZ [1407.5597])

* So string theory answers the question of how to build an amplitude
exchanging higher-spin modes consistently at high energies:

Veneziano amplitude: (1968)
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String amplitudes

* What do string amplitudes do?

* Ultraviolet-complete low-energy physics by taming Planck-
scale pathologies in amplitudes.

* Accomplish this by adding a tower of massive higher-spin
degrees of freedom. (Cannot add just one higher-spin state
without making the problem worse. e.g.. CEMZ [1407.5597])

* So string theory answers the question of how to build an amplitude
exchanging higher-spin modes consistently at high energies:

Veneziano amplitude: (1968)
D(—s)I (1) |

Ay(s,t) =
v(s,t) ['(—s—1) ' How unique is this?

| What is the math question about the
S-matrix to which string amplitudes
are the answer?




String amplitudes

What makes (tree-level, planar) string amplitudes unique?

e Dual resonance?

* Towers of higher-spin states?

 Tame UV behavior?

e Straightforward generalization to n-point amplitudes?
* Worldsheet integral representation?

What properties of Veneziano amplitudes enable these miracles?

e Regge spectrum with m? oc n?



String amplitudes

What makes (tree-level, planar) string amplitudes unique?

X Dual resonance?

X Towers of higher-spin states?

X Tame UV behavior?

X Straightforward generalization to n-point amplitudes?
X Worldsheet integral representation?

What properties of Veneziano amplitudes enable these miracles?

¥ Regge spectrum with m? oc n?




Dual resonance and UV finiteness

* Dual resonance is deeply tied to the asymptotic scaling of the amplitude in the
Regge limit (large s, fixed t) Cheung, GR [2302.12263]

e For an amplitude satisfying crossing A(s,t) = A(t, s), with tree-level poles at
s,t = u(n), then as long as the residue at s = oo is well defined,
1 A(s,t
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Dual resonance and UV finiteness

* Dual resonance is deeply tied to the asymptotic scaling of the amplitude in the
Regge limit (large s, fixed t) Cheung, GR [2302.12263]

e For an amplitude satisfying crossing A(s,t) = A(t, s), with tree-level poles at
s,t = u(n), then as long as the residue at s = oo is well defined,
1 A(s,t
L G P G
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we have dual resonance:

A(s,t) = Axo(t) +

Polynomial residues:
finite # of states on each resonance



Dual resonance and UV finiteness

* Dual resonance is deeply tied to the asymptotic scaling of the amplitude in the
Regge limit (large s, fixed t) Cheung, GR [2302.12263]

e For an amplitude satisfying crossing A(s,t) = A(t, s), with tree-level poles at
s,t = u(n), then as long as the residue at s = oo is well defined,
1 A(s,t
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Need infinite number of poles
to resum the propagator



Dual resonance and UV finiteness

* Dual resonance is deeply tied to the asymptotic scaling of the amplitude in the
Regge limit (large s, fixed t) Cheung, GR [2302.12263]

e For an amplitude satisfying crossing A(s,t) = A(t, s), with tree-level poles at
s,t = u(n), then as long as the residue at s = oo is well defined,

1 A(s,t

— dS (87 )
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= Ao (t)

S=00 S

we have dual resonance:

Als,t) = A (t) + Y ;(zé’;”’_t)s = A(s)+ > jfg’_s)t — A(t, )

* For Veneziano amplitude, Ay (s — 00,t) ~s' = A, (t) =0 for t <0, so

Ay (s.1) = L(—s)(=t) _ i RX(_n;t)

['(—s—1) ot

fiv(n,1) = nl T(t+1)  nl Z [k+1]






Spectral curve

e Define a function f(u, ) whose zero locus will fix the spectrum of the theory:
f(:ua V) =0

kinematic argument level argument



Spectral curve

e Define a function f(u, ) whose zero locus will fix the spectrum of the theory:

fp,v) =0

* We will pick f(u,v) = P(v) — pQ(v) for some polynomials P, () so the
spectrum is a rational polynomial:



Spectral curve

Define a function f(u,v) whose zero locus will fix the spectrum of the theory:

fp,v) =0

We will pick f(u,v) = P(v) — uQ(v) for some polynomials P, ) so the
spectrum is a rational polynomial:

If we choose P, () to be monic, with P of degree h and ) of degree h — 1,
then 1.(n) is asymptotically Regge, as required on general grounds. £2°n-Huot

Komargodski, Sever,
A h_ L h _ Zhiboedov [1607.04253]
P(v) =) j—oPrV QW) =>1_1 qrV
po=q1 =1

For sufficiently large h, we can fit any finite number of specified masses in the
spectrum.



Galois meets Veneziano

* Write f as a product over its roots: f(u,v) = [ [(v — va(p))

e When s,t = u(n), there exists some v, € {v} that equals n.



Galois meets Veneziano

* Write f as a product over its roots: f(u,v) = [ [(v — va(p))

e When s,t = u(n), there exists some v, € {v} that equals n.

* We define our amplitude by the Galois sum over the Veneziano amplitude,
sending s,t — v, (s), v5(t):

* Sum is over the Galois group of the roots of f

* Simple poles at s,t = u(n)



Galois meets Veneziano

* Write j as a product over its roots: f(u,v) = H(u — Vo (1))

e When s,t = u(n), there exists some v, € {v} that equals n.

* We define our amplitude by the Galois sum over the Veneziano amplitude,
sending s,t — v, (s), v5(t):

* Sum is over the Galois group of the roots of f

e Simple poles at s,t = u(n)

* We can write our amplitude in a remarkable dlog form as a kinematic
transformation of the Mandelstam variables:




Asymptotics and control theory

* |In the Regge limit of s — oo at fixed ¢, string amplitudes scale exponentially,
Ay (s,t) ~ s

 How do the roots v, (s) behave in this limit?
e One (call it 1vy) asymptotes to s: lims_, o vo(s)/s =1
e The other h — 1 limit to the s-independent roots of Q(v)

* The Regge limit of our bespoke amplitude therefore goes like:

Ao (t) ~ SIEEOZ (Suﬁ(t) 4+ Z Va(s)uﬁ(t))
B

a0



Asymptotics and control theory

* |In the Regge limit of s — oo at fixed ¢, string amplitudes scale exponentially,
Ay (s,t) ~ s

 How do the roots v, (s)behave in this limit?
e One (call it 1vy) asymptotes to s: lims_, o vo(s)/s =1
e The other h — 1 limit to the s-independent roots of Q(v)

* The Regge limit of our bespoke amplitude therefore goes like:

Ao (t) ~ SILIEOZ (Sl/ﬁ(t) 4+ Z Va(s)vﬁ(t)>
B

a0
e Dual resonance demands well defined A, (t), which requires:




Dual resonance and Newton’s identities

e Given [ satisfying the control theory conditions, A(s,t)has a dual resonant
representation,

A(s,t) = Aso(t) + Y M](%:)l’_t)s

n=0

* The branch cuts in s cancel in the Galois sum over the propagators:

1 ~ Onf(s,n)
2 )~ )

«



Dual resonance and Newton’s identities

e Given [ satisfying the control theory conditions, A(s,t)has a dual resonant
representation,

A(s,t) = Ao (t) + i R, 1)

“— p(n) — s

* The residues R(n,t) are polynomials in t. All of the branch cuts in the vz(t)
have precisely cancelled. This is a consequence of Galois theory, and can be
formally proved using the fundamental theorem of symmetric polynomials.



Dual resonance and Newton’s identities

e Given [ satisfying the control theory conditions, A(s,t)has a dual resonant
representation,

A(s,t) = Aso(t) + Y ul(%:)%—t)s

* The residues R(n,t) are polynomials in t. All of the branch cuts in the vz(t)
have precisely cancelled. We can calculate them directly by computing the
power sums di(t) = > va(t)* using Newton’s identities:

p1 — tqq 1 0 R 0
2(p2 —tg2)  p1—tq 1 . 0
dp(t) = (=1)* |3(ps — tq3s)  p2 — tqe p1 — tqu
: : I . 1
k(pr —tqr) DPrk—1 —tqx—1 Pr—2 —tqx—2 -+ p1—tq

n

At = S L o

k=0




Dual resonance and Newton’s identities

e Given [ satisfying the control theory conditions, A(s,t)has a dual resonant
representation,

= R(n,t)
“— p(n) — s

 Even more directly, we can make use of the dlog form of the amplitude:

271

(1)S" Ry (m, vs(t)) = 11 § dtog( (6. 7) Ry (7
B

* Deforming the contour to 7 = oo, we can explicitly calculate the residue

coefficients:
— Z b (n)tF = Z CngGéD)(COS 0)
k=0 ¢=0
_1\n—k,,/
bk(n) _ ( 1) M (n) lim [ n— k—|—1an k (Rv(n 7_) a aklogf t,T ‘t 0)]

kl(n — k)l 7o



Simplest nonlinear model

A particularly nice choice of polynomials is the following:

P(n) =n*+4d(n+1) . n?
Q(n) =n+1 = =

+0

Residue at infinity gives a quartic contact term:

A (t) = L]{: 9 s 1) =1

21 S
Dual resonant amplitude:

A(s,t) =1+ ) :(2727)7”_15)8

Satisfies partial wave unitarity for all 6 € [—0.5, —0.354], setting mexy = 0



Simplest nonlinear model

e General h = 2 model:

n* + pin + pa
N+ g2

* Parameter space satisfying dual resonance and partial wave unitarity:

2 _
Mt 0
T ) LI e L B L m [
Z ] 10
25} o u(0) : 1(0)
I Eh N
20( 9 f 5
p2) | -3 u(2) -1} —6
15} _
_ 4 [ —7
I 2
10[ —5 : _8
3l
05t . o o v el
05 0.0 05 10 15 2.0 4 3 2 1 0



Post-Regge expansion

 Expand in series around the asymptotic spectrum:

K2 KA
n — Uy L (n — vy, )h—1

p(n) = (n—vi) + K1+

e Fixing m2,, =0 and apo = a1, = 0, unitarity and dual resonance require

v, € [—1.229,0) inthe h = 2 case.

e For h = h = 4
S S L L B B B ] 10 U
—2.0 | ol | . 43
| I ] 0
—25 1L |
] [ ] -3
K1 i K1 i
a0l ] _2 i 6
] ] -9
35/ : 3| 1 19
=40 : -4 -_I L L L P P . |_
~05 ~0.4 -03 —0.2 -0.1 0.0 -1.0 0.8 ~06 0.4 -0.2 0.0




Post-Regge expansion

 Expand in series around the asymptotic spectrum:

K K
2 _I_..._I_ h

pn) =(n—ve) + k1 + — (n — v, )h—1

e Fixing app =a11 =0and pu(n) =An+ u(0) for 0 <n < h — 1, the parameter
space becomes:

Sy O = W N

forbidden:
spinning tachyons




Higher-point generalization

* There is a natural generalization of our construction to the scattering of an
arbitrary number of particles.

e \Write the planar basis of Mandelstam invariants as {ss}
(e.g., four-point basis is {s7} = {s12, s23})



Higher-point generalization

* There is a natural generalization of our construction to the scattering of an
arbitrary number of particles.

e Write the planar basis of Mandelstam invariants as {s;}
(e.g., four-point basis is {s7} = {s12, s23})

* Take the higher-point string amplitude Ay ({s;})and remap each planar invariant:




Worldsheet representation

* Worldsheet integral form of the Veneziano amplitude:

1
Ay (812, 523) :/ dex=*2 71 — )7
0

* The structure of the integrand allows the Galois sum to factorize, giving a
worldsheet integral representation of our bespoke amplitudes:

1
A(s12,523) = / dex—Valz(Slz)—l Z(l - x)—ua23(323)_1
0

Q192 a23



Worldsheet representation

* Worldsheet integral form of the Veneziano amplitude:

1
Ay (812, 523) :/ dex=*2 71 — )7
0

* The structure of the integrand allows the Galois sum to factorize, giving a
worldsheet integral representation of our bespoke amplitudes:

A(s12,523) / dQEZx Voo (812) = 12 (1 —x) ~Vagg(s23)—1

Q192 a23

* Defining the special function p(z,s) = Y. _ 7«5, this generalizes
straightforwardly to higher-point scattering:
e Write s;; = ), cijr51 in planar basis
* Take Koba-Nielsen integral form of the higher-point amplitude and

Send Hz<3( :Cj)_Sij — HI ,0 Hz<] ('CC’L o ajj)CijI7 ST



Worldsheet representation

* Worldsheet integral form of the Veneziano amplitude:

1
Ay (812, 523) :/ dex=*2 71 — )7
0

* The structure of the integrand allows the Galois sum to factorize, giving a
worldsheet integral representation of our bespoke amplitudes:

A(s12,523) / diEZiE Voo (812) = 12 (1 —x) ~Vagg(s23)—1

Q192 a23

* Defining the special function p(z,s) = Y. _ 7«5, this generalizes
straightforwardly to higher-point scattering:
e Write s;; = ), cijr51 in planar basis
* Take Koba-Nielsen integral form of the higher-point amplitude and

Send Hz<3( :Cj)_Sij — HI ,0 Hz<] ('CE’L o ajj)CijI7 ST
* For example, five-point string amplitude:

—812 1—g \ ® —sa5 [ 1=y s 1 — —S51
1 TY Yy 1—xy ( ZCy)
z(1 —z)y(l —y)

Ay (s12, 523, S34, S45, S51) //dxdy



Worldsheet representation

* Worldsheet integral form of the Veneziano amplitude:

1
Ay (812, 523) :/ dex=*2 71 — )7
0

* The structure of the integrand allows the Galois sum to factorize, giving a
worldsheet integral representation of our bespoke amplitudes:

A(s12,523) / diEZiE Voo (812) = 12 (1 —x) ~Vagg(s23)—1

Q192 a23

* Defining the special function p(z,s) = Y. _ 7«5, this generalizes
straightforwardly to higher-point scattering:
e Write s;; = ), cijr51 in planar basis
* Take Koba-Nielsen integral form of the higher-point amplitude and

Send Hz<3( :Cj)_Sij — HI ,0 Hz<] ('CE’L o ajj)CijI7 ST

* For example, five-point bespoke amplitude:

A( ) /1 /1 o p(x, 812),0 (11__;3/, 823) P(y, 845),0 (11_$yy, 334) ,0(1 — Y, 351)
512,523,534, 845,551 ) = ray
(1 —2)y(1l—y)



Worldsheet representation

Worldsheet integral form of the Veneziano amplitude:

1
Ay (812, 523) :/ dex=*2 71 — )7
0

The structure of the integrand allows the Galois sum to factorize, giving a
worldsheet integral representation of our bespoke amplitudes:

A(s12,523) / diEZiE Voo (812) = 12 (1 —x) ~Vagg(s23)—1

Q192 a23

Defining the special function p(z,s) = Y. _ 27«5, this generalizes
straightforwardly to higher-point scattering:

e Write s;; = ), cijr51 in planar basis

* Take Koba-Nielsen integral form of the higher-point amplitude and

Send Hz<3( :Cj)_Sij — HI ,0 Hz<] ('CE’L o ajj)CijI7 ST

One can directly check that factorization on the n = 0 state holds as for strings:

hm S« AV {8[} Z AV {SIL} AV({SIR})

—0
L1R



Worldsheet representation

* Worldsheet integral form of the Veneziano amplitude:

1
Ay (812, 523) :/ dex=*2 71 — )7
0

* The structure of the integrand allows the Galois sum to factorize, giving a
worldsheet integral representation of our bespoke amplitudes:

A(s12,523) / diEZiE Voo (812) = 12 (1 —x) ~Vagg(s23)—1

Q192 a23

* Defining the special function p(z,s) = Y. _ 7«5, this generalizes
straightforwardly to higher-point scattering:
e Write s;; = ), cijr51 in planar basis
* Take Koba-Nielsen integral form of the higher-point amplitude and

Send Hz<3( :Cj)_Sij — HI ,0 Hz<] ('CE’L o ajj)CijI7 ST

* One can directly check that factorization on the n = 0 state holds as for strings:

lim (5. — p(0)A({s1}) = #'(0) Y A"V A{va,, (s, ) DRIV A{va,, (510)})

«— (0
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Bootstrapping string theory?

* So far, we’ve built a remarkable class of “bespoke dual resonant” amplitudes
with arbitrary spectra m? = 1(n) by using the Veneziano amplitude as input and
kinematically transmuting it using our Galois sum.

e Let’s assume a linear spectrum m? = n and see if the dynamics of string theory
can be derived using minimal assumptions:

i) Crossing Symmetry
ii) Polynomial Residues
iif) High-Energy Boundedness



Integer spectrum bootstrap

* As we have shown, dual resonance and a well-defined pole at infinity are

equivalent, so we start with a dual resonant form of the amplitude, with arbitrary
residues.

* A priori, this is a two-variable problem:

Als,t) =Y o =3 Buls) _ 4.5

* Turn into a single-variable problem by choosing special kinematics,
t=s—k, ke N

Cheung, GR [2302.12263]



Integer spectrum bootstrap

* As we have shown, dual resonance and a well-defined pole at infinity are

equivalent, so we start with a dual resonant form of the amplitude, with arbitrary
residues.

* A priori, this is a two-variable problem:

* Turn into a single-variable problem by choosing special kinematics,
t=s—k, ke N

Crossing becomes:

A(s,s — k) = A(s —k,s) = Z n— s annlj?s
k—1
-y ey e

n=0

Cheung, GR [2302.12263]



Integer spectrum bootstrap

o0 k—1

R,(s—k)— R,_i(s R, (s —k
S Ruls = ) () _ 5 Bala =)

n—s
n=%k n=0

(finite number of terms,
nopolesat s=n <k

Cheung, GR [2302.12263]



Integer spectrum bootstrap

i Ro(s — k) — Ro_i(s) ’“i Ro(s—k)
n—s B n—s
n==k n=0
demanding
nopolesat s=n <k
yields

e

Strictly speaking, neither necessary nor sufficient for crossing. We will
take the residue constraint above as motivation and see what we find.
All subsequent examples will indeed satisfy this constraint and

converge.

Cheung, GR [2302.12263]



Integer spectrum bootstrap

We have n conditions
R,in—k)=R,_r(n), 1<k<n

on the n + 1 free parameters in the residue ansatz:

R (t) = f: N
m=0

Cheung, GR [2302.12263]



Integer spectrum bootstrap

We have n conditions
R,in—k)=R,_r(n), 1<k<n

on the n + 1 free parameters in the residue ansatz:

R (t) = f: N
m=0

Defining A\, = A\, @nd for brevity writing ! =I'(z + 1) for z € C, we find the
general solution:

Ay t! n!
R, (1) = Z

m! (t —m)! (n —m)!

m=0

Cheung, GR [2302.12263]



Veneziano amplitude

* Letuschoose A, = L
m!

t !

e The Vandermonde identity then implies R, (t) = ( ;n?)

* The amplitude is thus:

Veneziano amplitude



Hypergeometric amplitude

e | etuschoose )\, = reR

Cheung, GR [2302.12263]



Hypergeometric amplitude

e | et uschoose )\, = reR

(t+n+r)r!
(t+r)(n+r)!

— R, (t) =

* From the definition of the generalized hypergeometric function,

o

Cl/]_, e o o 7 a/m (al)k ¢ (azm)k Z

the amplitude becomes
= R, (1) 1 1, —s, 1+t+r
A(S’t)_zn_s—_g?)FQ[ 1_8,1+r ,1

n=0

k

* Using a Thomae transformation,

New hypergeometric amplitude

Cheung, GR [2302.12263]
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Hard scattering

* In the high-energy, fixed-angle limit,
s], |t] — oo, t/s fixed

the hypergeometric amplitude exhibits the scaling:

A(S,t) N@B(S,t) + % + B(S,t) — (S—|—t)10g(8—|—t) —Slogs—tlogt—|—
S

* In the physical region, cos§ =1+ 2 € [—1,1], one has B < 0, so the amplitude
falls off as a power law ~ r/st, unless » = 0, where the exponential decay of the
string amplitude obtains.



Hard scattering

* In the high-energy, fixed-angle limit,
s], |t] — oo, t/s fixed

the hypergeometric amplitude exhibits the scaling:

A(S,t) N@B(S,t) + % + B(S,t) — (S—|—t)10g(8—|—t) —Slogs—tlogt—|—
S

* In the physical region, cos§ =1+ 2 € [—1,1], one has B < 0, so the amplitude
falls off as a power law ~ r/st, unless » = 0, where the exponential decay of the
string amplitude obtains.

* In the unphysical ¢ > 0 region, B > 0 and we find the universal scaling predicted
by Caron-Huot, Komargodski, Sever, Zhiboedov [1607.04253].

logA ~ (s+t)log(s+t) — slogs — tlogt



A worldsheet interpretation?

Remarkably, the hypergeometric amplitude has an integral representation,
8 1 r 1(1 :ﬂy)t
St—r//da:dy 1—:1:)’5“

reminiscent the Koba-Nielsen form for the Veneziano amplitude,

x—s—l

1 —x)tt!

1
4-point: A%)n:/ dx(
0

Cheung, GR [2302.12263]



A worldsheet interpretation?

Remarkably, the hypergeometric amplitude has an integral representation,
8 1 ’r 1(1 QEy)t
St—r//da:dy 1—:1:)’5“

reminiscent the Koba-Nielsen form for the Veneziano amplitude,

1 1 —s12—1 —845—1(1 _ xy)823+834—851
5-point: A% — / / dzdy 2 Y
P ven = | | rdy (1 — z)s2aT1(1 — y)saatl

&93

Cheung, GR [2302.12263]



Coon amplitudes

* Historically, string amplitudes predate the realization that the theory was about
strings at all. Exploring amplitudes can lead to new physics, as we’ve seen from
this talk.

* Also satisfying our physical constraints is the ¢-deformed generalization of
Veneziano discovered by Coon (1969), unfortunately forgotten for decades:

Citations per year Recent surge of interest:
- * unitarity
Figueroa, Tourkine [2201.12331];
8 Bhardwaj et al. [2212.00764];
Jepsen [2303.02149]

e string amplitudes with

2 similar properties
0 M AN /\/J Maldacena, GR [2207.06426]

e construction and

generalization

Cheung, GR [2210.12163, 2302.12263];
Geiser, Lindwasser [2207.08855, 2210.14920]




g-hypergeometric amplitude

n

e We can generalize this construction to the g-deformed integers [n], = 11__qq :

obtaining a family of amplitudes that subsumes the Veneziano, Coon, and
hypergeometric amplitudes:

A |
|
i Veneziano
i Coon
i Hypergeometric 35
: g-Hypergeometric 3¢9
Ofccceaaaaas o--
|' .
|
—
0 1 q

New g-hypergeometric amplitude

Cheung, GR [2302.12263]
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* We have constructed new infinite-parameter families of amplitudes obeying:
* Meromorphicity

Crossing symmetry

Polynomial residues

Partial wave unitarity

UV boundedness

Dual resonance



Conclusions

* We have constructed new infinite-parameter families of amplitudes obeying:
* Meromorphicity
e Crossing symmetry
* Polynomial residues
* Partial wave unitarity
* UV boundedness
* Dual resonance

* Galois sum construction: bespoke spectra
* Worldsheet-like representation
* n-point generalization

e Bootstrap construction with Regge spectrum: hypergeometric amplitudes



Conclusions

* We have constructed new infinite-parameter families of amplitudes obeying:
* Meromorphicity
e Crossing symmetry
* Polynomial residues
* Partial wave unitarity
* UV boundedness
* Dual resonance

* Galois sum construction: bespoke spectra
* Worldsheet-like representation
* n-point generalization

e Bootstrap construction with Regge spectrum: hypergeometric amplitudes







