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where h̃ab(ω, θ) is Fourier transform of hab(u, θ).

▶ The Fock space FI
0 does not contain any states with memory. States with

memory ∆ are elements of a different Fock space FI
∆ which is unitarily

inequivalent to FI
0 . This is the source of all IR divergences.

▶ There are an uncountably infinite number of “in/out” Fock spaces labeled by all
possibles memories ∆in/out. Memory is not conserved. To go beyond “inclusive
cross sections” and have a well-defined S-matrix one needs to include states with
memory. 4 / 8



Massive QED - Faddeev-Kulish Hilbert Space

Qi0(λ) = Qi−(λ)−
1

4π

∫
S2

∆in
a Daλ

▶ Key Idea: The charge at spatial infinity is conserved. Therefore “in” Hilbert space
of eigenstates of the charge Qi0(λ) with eigenvalue Qi0(λ) will will map to an
“out” Hilbert space of eigenstates with eigenvalue Qi0(λ̃) [Faddeev & Kulish, 70’]. . .
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with the incoming electrons. These are dressed states:
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of dressed electrons∫
H

d3p w(p) |p⟩ ⊗ΨEM
∆(p,Qi0 )

▶ HQi0
consists physically reasonable states and yields an IR finite S-matrix.

▶ This construction fails in all other theories including quantum gravity.
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Vacuum Gravity - Failure of Faddeev-Kulish Hilbert Space

QGR
i0 (f ) = − 1

8π

∫
S2

∆in
abD

aDbf (θ) +

∫
I −

f (θ)N2

▶ The analogous construction in GR is to attempt to correlate the incoming energy
flux of the incoming gravitational radiation with the incoming memory.
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▶ The analogous construction in GR is to attempt to correlate the incoming energy
flux of the incoming gravitational radiation with the incoming memory.

Theorem

The unique eigenstate of QGR
i0 (f ) is the vacuum with vanishing eigenvalue.

▶ Intuition: Memory and Energy flux are not independent! In gravity, the
gravitational radiation “sources” (i.e. via energy flux) its own memory. Matching
the memory to the energy flux introduces more radiation! This introduces more
energy flux and so on...

There does not appear to be any “preferred” Hilbert space for scattering in QG
(“Non-Faddeev-Kulish” representations also fail) 6 / 8
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Conversely, given a list of correlation functions on A (satisfying commutation
relations, positivity, ...) one can construct (by GNS) a Hilbert space where this
list of correlation functions is packaged as a vector |Ψ⟩ ∈ H . Thus viewing a
state as a list of correlation functions on A or as a vector in a Hilbert space are
essentially equivalent. [Witten, 2022],[Hollands & Wald, 2014]
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relations, positivity, ...) one can construct (by GNS) a Hilbert space where this
list of correlation functions is packaged as a vector |Ψ⟩ ∈ H . Thus viewing a
state as a list of correlation functions on A or as a vector in a Hilbert space are
essentially equivalent. [Witten, 2022],[Hollands & Wald, 2014]

▶ However, by considering states as lists of correlation functions one is now freed
from choosing in advance a particular Hilbert space!
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(invertible) map between the “in” and “out” Algebras [Källén, ’49]

S : Aout → Ain =⇒ ⟨aout⟩Ψin
= ⟨S [aout]⟩Ψin

▶ This construction does not pre-suppose what Hilbert space the “out” state lives in
and is therefore manifestly IR finite.

▶ The (perturbative) formulation of algebraic scattering theory for a massive scalar
field coupled to a massless scalar field can be straightforwardly constructed and
one can compute the correlation functions of any “out” observables (fields,
memory, charges, ...) to any order in perturbation theory [G.S., K. Prabhu, in prep.]. 7 / 8



Bad Things Happen to “Good” Scattering Data

▶ In any gauge theory, the charges Qi0(λ) have serious implications for coherence.
This ultimately comes from the charges “superselect”. Any local gauge invariant
observable O commutes with all of the charges

[Qi0(λ),O] = 0 for all λ(θ)
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▶ In any gauge theory, the charges Qi0(λ) have serious implications for coherence.
This ultimately comes from the charges “superselect”. Any local gauge invariant
observable O commutes with all of the charges

[Qi0(λ),O] = 0 for all λ(θ)

▶ A more familiar case of superselection is the total electric charge Q(1). Given
states Ψq1 and Ψq2 with total charge q1 and q2, a standard argument shows that
the matrix element ⟨Ψq1 |O|Ψq2⟩ for any local gauge invariant observable O must
vanish

⟨Ψq1 |[Q(1),O]|Ψq2⟩ = (q1 − q2) ⟨Ψq1 |O|Ψq2⟩ = 0

Therefore, if q1 ̸= q2 then ⟨Ψq1 |O|Ψq2⟩ = 0. In other words, for any local gauge
invariant observable O, a superposition of Ψq1 and Ψq2 is an incoherent
superposition — these states cannot interfere.
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▶ An incoming electron Ψf has definite total electric charge but is a superposition
of incoming momenta and therefore superposition of large gauge charges.

▶ By the same kind of argument that we just used for the total charge, any local
gauge invariant observable O cannot see interference between the different
momentum modes of Ψf .

Theorem

The expected value ⟨O(x)⟩Ψf
is spacetime translation invariant for any gauge invariant

observable O [D. Danielson, G.S. & R. M. Wald, in prep.]

Ψf does not correspond to a localised electron and is not a physical state!

▶ Physical states can be obtained by starting with a localised electron in the bulk.

▶ The (extremely fine tuned!) entanglement and absorption of“soft radiation” of
the FK state is responsible for the localization of the electron in the bulk!
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Summary

▶ IR divergences arise from sticking a state in a Hilbert space to which it doesn’t
belong.

▶ In massive QED the Faddeev-Kulish representation is a preferred representation
but, as opposed to a “proof of principle” it is actually a “fluke”!

▶ Non-Kulish-Faddeev representations don’t work

▶ A well-defined (IR-finite) scattering theory can be constructed by simply evolving
“in” correlation functions to “out” correlation functions.

▶ Due to the infrared properties of the theory, the space of asymptotic states in
QED (or Yang Mills) which correspond to physical “bulk” states are highly
fine-tuned and there are many states that are “junk”!
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Failure of FK: Massless QED and Linearized Gravity

Qi0(λ) = J (λ)− 1

4π

∫
S2

∆in
a Daλ

▶ In massless QED, the analogous construction is to pair eigenstates of the
incoming charge-current flux with memory. However, the eigenvalue is now a
δ-function on S2. The required “dressings” have “collinear divergences” and
therefore have infinite energy! All “FK states” are unphysical except the vacuum
[Kinoshita,’62],[Lee & Nauenberg, ’64]

QGR
i0 (f ) = − 1

8π

∫
S2

∆in
abD

aDbf (θ) +

∫
I −

f (θ)Tvv (v , θ)

▶ In linearized quantum gravity one can again repeat the FK construction. [Akhoury &

Choi, 2017] In this case there are no collinear divergences so the “dressings” are not
singular. However, we cannot set QGR

i0 = 0 since this would set the total
four-momenum to zero! (Can’t hide mass behind the moon!) All “FK states”
have undefined angular momentum except the vacuum
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