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see also: 2208.07032 [HL], 1811.0258 [Berkooz, Isachenkov, Narovlansky, Torrents],
2108.04841 [Harlow & Wu], 1904.12820 [HL, Maldacena & Zhao]
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According to Einstein gravity [shenker & Stanford], black holes [Maldacena,
Shenker, Stanford, - -] @are maximally chaotic systems:

27
chaos exponent = —
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According to Einstein gravity [shenker & Stanford], black holes [Maldacena,
Shenker, Stanford, - -] @are maximally chaotic systems:

27
chaos exponent = —

= consequence of the near horizon symmetries.
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For near-extremal black holes, sl> of the NAdS, throat:

These generators move matter with respect to the Schwarzian
boundary, preserving the length of the wormhole (L, Maldacena, zhao; Harlow

& Wul.
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i[B,Pf] = ¥P*, PE*=E+P, B~ QE(HR — Hi)
s

ei(HR—HL)tP—e—i(HR—HL)t — e%rtP_
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To understand why P~ is relevant, consider 2 — 2 gravitational

Scattering [Dray & 't Hooft; Shenker & Stanford; Gao-Jafferis-Wall; Lam et al.,...]:

W V

Shapiro time delay = P* symmetry
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In string theory, chaos is reduced [shenker & Stanford]:
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chaos exponent = TV —1- # (

/8 Y

s
Uads

)+

43



In string theory, chaos is reduced [shenker & Stanford]:

ls

2
chaos exponent = LV, v=1—+# (
B Cads

Closely related to inelasticity.

Wish list: v in N =4 SYM at finite (At Hooft, 3)-

)+
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A simpler model with a known chaos exponent is “large p SYK”

[Maldacena & Stanford].

8% a% TV
chaos exponent = 7, — =cos| — ).
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A simpler model with a known chaos exponent is “large p SYK”

[Maldacena & Stanford].

2mv %
chaos exponent = —— — = cos(—).

B BJ

Goal: give a bulk interpretation of v < 1.
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Strategy

1. scenic detour through double scaled SYK [gerkooz et al, - - -], where
the “bulk Hilbert space” is known (.

2. Find the symmetries (q-deformed algebra).
3. Go back to large p SYK = fake geometry.
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Strategy

1. scenic detour through double scaled SYK [gerkoo et a
the “bulk Hilbert space” is known (.

2. Find the symmetries (q-deformed algebra).
3. Go back to large p SYK = fake geometry.

Fake geometry ~ subtlety with the continuum limit.

. ---1, where
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SYK

N Majorana fermions, participating in the interaction

H=P2 3 gty (B,) <

1<i<--<ip<N

3 dimensionless parameters: (N, p, 37).
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SYK

N Majorana fermions, participating in the interaction

H=P2 3 gty (B,) <

1<i<--<ip<N

3 dimensionless parameters: (N, p, 37).

Take N — oo, p — 00. 2 remaining parameters: (N/p?, 3.7).
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scaling limits of SYK

large p SYK N\

e

double scaled
SYK

——> long wormhole limit

RMT limit pI
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scaling limits of SYK

large p SYK N\

T

double scaled
SYK

——> long wormhole limit

RMT limit pI

Convenient to introduce A = 2p?/N.
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double scaled
SYK

——> long wormhole limit

BT

RMT limit
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The advantage of the double scaled limit is that there is a new
technique “chord diagrams” [gerkooz et ar, ...] that can be used to solve
the theory.

12 /43



Chord rules

1. Draw Wick contractions! “chords”’ between like operators

2. Intersections between chords get a factor of g = e™*
(Hamiltonian) or r = e™*2 (matter, A = p'/p).
3. Sum over chord diagrams

tr(H*MH3M) > = qr

Double intersections are forbidden
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(2) (b)
H=da"+a, a=a[n, aln)=|n—1)
1-q"

1-g
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rq

(QQIR = aL +ar, OR :{it&R[nR] + OéLqunR[”L](C)




(QQIR = aL +ar, OR :{it&R[nR] + OéLqunR[”L](C)
H = CLI +a, a = OéL[”L] + aRqunL[”R]
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The chord algebra
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Chord algebra is generated by:

{HL, HR, F)}
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Chord algebra is generated by:
{HL, HR, F)}

i counts the number of chords (weighted by A). Discrete analog
of the length of the Einstein-Rosen bridge.
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Microscopic interpretation of chord number

Oper‘ator Size [Roberts-Stanford-Streicher, Qi-Streicher] |S measured by the 2—S|ded

operator:
N

size = % Z <1 + i@béqbi) .

a=1

Let 7 be the total chord number, weighted by dimension:

Each H chord is associated with an operator of size p.
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g-deformed commutator:
[A, Bl = AB — gBA

Writing H, = a} + a; and Hg = al, + ag,

[ag,ar] = [aL ak] =0, (1)
[7, aI/R] = uI/R, (A, a /r] = —ar/r (2)
[ac, af] = [ar, af] = 4" (3)
[a/r: of ple = 1. (4)
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Chord algebra Achord is also a bi-algebra. @
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Chord algebra Acporg is also a bi-algebra. @

Algebra: a vector space equipped with an associative product

A A — A.
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Chord algebra Achorg is also a bi-algebra. @

Algebra: a vector space equipped with an associative product

A A — A.

Bi-algebra: an algebra with a coproduct: D : A — A® A that is
compatible with multiplication D(a - b) = D(a) - D(b).
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Chord algebra Achorg is also a bi-algebra. @

Algebra: a vector space equipped with an associative product

A A — A.

Bi-algebra: an algebra with a coproduct: D : A — A® A that is
compatible with multiplication D(a - b) = D(a) - D(b).

D(al)=dal @1, (5)
D(a))=a,®1+q%¢"®ay, (6)
D(A)=i®l+1®a+A(l®1) (7)
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This coproduct has a simple physical interpretation:

R @R — [RIRRI

§ joins two wormholes; 571 splits:

sy — e
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This coproduct has a simple physical interpretation:
6 s[RI @ [1R1)y — [t
§ joins two wormholes; 571 splits:
SThonney = [riy @ 1)

Coproduct:
D@)=6"1a-6

Related to the factorisation problem .. Harlow and Jaferis, ..].
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Representations of Achord
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What are the chord algebra irreps?

1. Short irrep, consisting of the “empty wormhole” states:
In), n€Zs>og
2. 1-particle irrep (highest weight irrep a; ) = ag 1) = 0.):
InL, nR) = [I1---12E---1)

The Hilbert space decomposes into a sum over these irreps. What
about multi-particle states?
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Coproduct builds multi-particle reps of the chord algebra.

We solved the Clebsch-Gordan problem of decomposing
multi-particle reps into irreps:

|multi-chord state) = ny, |irreps) (8)
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We define 4-pt “chord blocks” = projector onto a particular irrep.
Analogous to Virasoro blocks.
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We define 4-pt “chord blocks” = projector onto a particular irrep.
Analogous to Virasoro blocks.

These blocks enjoy crossing symmetry, thanks to co-associativity of
the co-product:
(D®1)-D=(1®D)-D

[Gives the Hilbert space interpretation of expressions in Jafferis, Kolchmeyer, Mukhametzhanov & Sonner]
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The intermediate operators [VW], are analogous to double trace
primaries, schematically ~ VH"W. A, = Ay +Aw + n.

Two kinds of double traces [VW], and [WV],. Twice the number

we would expect from bulk free field theory in AdS, = inelastic
states
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Fake geometry from algebra
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Let's come back to the symmetries of large p SYK at finite temp.
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Let's come back to the symmetries of large p SYK at finite temp.

Look for a subalgebra C Achorg that commutes with 7

Jj=da—[A, ije{LR}
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Let's come back to the symmetries of large p SYK at finite temp.

Look for a subalgebra C Achorg that commutes with 7

Jj=ala;—[A, ije{LR}
Define ¢ = qﬁ/2. Take A — 0, find an sl5:

E=—5(Ju+Jrr), B =51 (JiL— Jrr)
P= ﬁ (JLr — JRL)

Valid at all temperatures
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We studied how these generators act on boundary operators. What
we found surprised us.
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Walas

0, (O(62)O(61))
(cos(¢1)0g, — Assin ¢1)(O(62)O(61))
(61)) = i(sin(¢1)0y, + A cos ¢1)(O(62)O(61))

v + %

S
S
\6\/
S

32/43



The circumference of the fake disk is precisely Sfake = B/ v.
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i[B,Pf] = FP%*, PT=E+P, B~x i(HR — Hy)
2TV

2mwv

el(HrR—HL)tp— o—i(HrR—HL)t _ 5 tp—
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There is a “geometric”’ explanation of the sub-maximal exponent
but it is unfamiliar.
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Ward identites: finite temp 2-pt function is conformally covariant
on the fake circle:

(O(62)0(01)) o @ v
2
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Ward identites: finite temp 2-pt function is conformally covariant
on the fake circle:

1

(0(62)0(61)) o 2B (95 v

4-pt function = commutator OTOC is only a function of the fake
cross ratio.

([Wa, V4][V3, W1])
(W2aW1)(V4Vs3)

<Z> Pa2
32 sin 52
¢14

32
sin 32

=2)\A AV Z EFay.awk(X)

sin

sin

c,% = Clebsch-Gordan problem described earlier.
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If ¢ starts out in the physical region, can act with a symmetry
generator to leave the physical region:

e\a\B . .
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What do the states look like in the

a>0
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J\,
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chord Hilbert space?

a<0
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Note that the y-axis rescaled by 10'® between the two figures.
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Two pictures:

} || = eeeees f @

We checked (numerically and analytically) that such states
reproduce the fake disk predictions as A — 0.
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Fake disk: makes sub-max chaos manifest

Fakeness is a geometric representation of certain “subtle” states,
~ chiral fermion problem on the lattice.
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Fake disk: makes sub-max chaos manifest

Fakeness is a geometric representation of certain “subtle” states,
~ chiral fermion problem on the lattice.

lout) — S |in) =

S
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Fake disk: makes sub-max chaos manifest

Fakeness is a geometric representation of certain “subtle” states,
~ chiral fermion problem on the lattice.

lout) — S |in) =

S

Question: general lessons for sub-max chaos?
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backup slides

41 /43



- . (9)

As time progresses forwards, the two particles approach each other,
the middle distance £p; shrinks:

=

<5 (10)

and the two (naively) pass through each other:

- - (11)

More accurate picture:

— € > (12)
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fakeness in p = 4 SYK

#(8 + 27.)/(2n)

1.04}

1.02¢

1.00

0.98¢
0.96¢

6J
figure 9b of Gu, Kitaev, & Zhang
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