Brane Fusion Frenzy

Non-Invertible Defect Fusion and Tachyon Condensation

Thomas Waddleton

in collaboration with Enoch Leung and Ibrahima Bah, arXiv:2306.15783

Johns Hopkins University

Simons Collaboration on Global Categorical Symmetries

[Gaiotto, Kapustin, Seiberg, Willet]

[Gaiotto, Kapustin, Seiberg, Willet]

The operators can be non-invertible

[Kaidi, Ohmori, Zheng], [Choi, Lam, Shao], [Tachikawa]

- $\blacktriangleright \mathcal{N} \otimes \mathcal{N}^{\dagger} \neq 1$
- Ex: Might need to stack operators with TFTs to make them gauge-invariant. This makes the operator non-invertible!

[Gaiotto, Kapustin, Seiberg, Willet]

The operators can be **non-invertible**

[Kaidi, Ohmori, Zheng], [Choi, Lam, Shao], [Tachikawa]

- $\blacktriangleright \mathcal{N} \otimes \mathcal{N}^{\dagger} \neq 1$
- Ex: Might need to stack operators with TFTs to make them gauge-invariant. This makes the operator non-invertible!

Instead, gives sum of other operators

•
$$\mathcal{N} \otimes \mathcal{N}^{\dagger} \simeq \mathcal{C} \sim \sum \mathcal{U}$$

Lower-dim surfaces ⇒ condensation defects [Roumpedakis, Seifnashri, Shao], [Choi, Cordova, Hsin, Lam, Shao]

[Gaiotto, Kapustin, Seiberg, Willet]

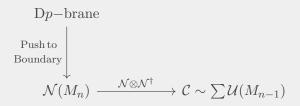
The operators can be **non-invertible**

[Kaidi, Ohmori, Zheng], [Choi, Lam, Shao], [Tachikawa]

$$\blacktriangleright \mathcal{N} \otimes \mathcal{N}^{\dagger} \neq 1$$

Ex: Might need to stack operators with TFTs to make them gauge-invariant. This makes the operator non-invertible!

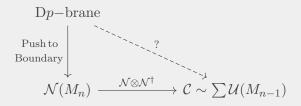
Instead, gives sum of other operators


•
$$\mathcal{N} \otimes \mathcal{N}^{\dagger} \simeq \mathcal{C} \sim \sum \mathcal{U}$$

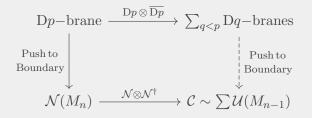
► Lower-dim surfaces ⇒ condensation defects [Roumpedakis, Seifnashri, Shao], [Choi, Cordova, Hsin, Lam, Shao]

Fusion coefficients given by decoupled TFTs, not numbers

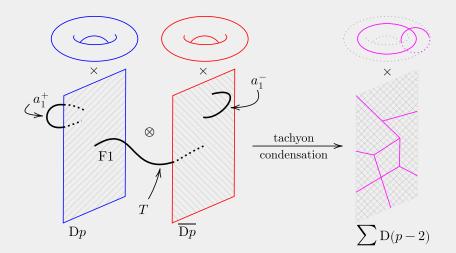
 $\blacktriangleright \mathcal{N}_a \otimes \mathcal{N}_b \simeq \mathcal{A} \otimes \mathcal{N}_{a+b}$



 Have examples from geometric engineering/holography [Apruzzi, Bah, Bonetti, Schafer-Nameki], [Garcia Etxebarria], [Heckman, Hübner, Torres, Zhang]


Probe branes made topological, WZ action

- Have examples from geometric engineering/holography [Apruzzi, Bah, Bonetti, Schafer-Nameki], [Garcia Etxebarria], [Heckman, Hübner, Torres, Zhang]
 - Probe branes made topological, WZ action
- Can we understand C from something stringy?



 Have examples from geometric engineering/holography [Apruzzi, Bah, Bonetti, Schafer-Nameki], [Garcia Etxebarria], [Heckman, Hübner, Torres, Zhang]

Probe branes made topological, WZ action

- Can we understand C directly from something stringy?
- Model with brane dynamics: get lower brane charges from tachyon condensation [Sen], [Witten]

CONDENSATIONS VIA CONDENSATION

JOHNS HOPKINS

• $\mathcal{W}^5 \times T^{1,1}$ with N D3-branes and M fractional D3-branes; dual to 4d $\mathcal{N} = 1 \mathfrak{su}(M)$ SYM after duality cascade

[Klebanov, Tseytlin], [Klebanov, Strassler]

- Bulk gauge group $\supset \mathbb{Z}_{2M}^{(0)} \times \widehat{\mathbb{Z}}_{2M}^{(2)} \times \mathbb{Z}_{M}^{(1)} \times \widehat{\mathbb{Z}}_{M}^{(1)}$
- Pick global form PSU(M): global $\mathbb{Z}_{2M}^{(0)} \times \widehat{\mathbb{Z}}_{M}^{(1)}$

• $W^5 \times T^{1,1}$ with N D3-branes and M fractional D3-branes; dual to 4d $\mathcal{N} = 1 \mathfrak{su}(M)$ SYM after duality cascade

[Klebanov, Tseytlin], [Klebanov, Strassler]

- Bulk gauge group $\supset \mathbb{Z}_{2M}^{(0)} \times \widehat{\mathbb{Z}}_{2M}^{(2)} \times \mathbb{Z}_{M}^{(1)} \times \widehat{\mathbb{Z}}_{M}^{(1)}$
- Pick global form PSU(M): global $\mathbb{Z}_{2M}^{(0)} \times \widehat{\mathbb{Z}}_{M}^{(1)}$
- Probe D5 wrapping $S^3 \subset T^{1,1}$; dual to $\mathbb{Z}_{2M}^{(0)}$ R-symmetry generator $\mathcal{N}(M^3)$

▶ anti-D5 gives orientation reversal \mathcal{N}^{\dagger}

• $W^5 \times T^{1,1}$ with N D3-branes and M fractional D3-branes; dual to 4d $\mathcal{N} = 1 \mathfrak{su}(M)$ SYM after duality cascade

[Klebanov, Tseytlin], [Klebanov, Strassler]

- Bulk gauge group $\supset \mathbb{Z}_{2M}^{(0)} \times \widehat{\mathbb{Z}}_{2M}^{(2)} \times \mathbb{Z}_M^{(1)} \times \widehat{\mathbb{Z}}_M^{(1)}$
- Pick global form PSU(M): global $\mathbb{Z}_{2M}^{(0)} \times \widehat{\mathbb{Z}}_{M}^{(1)}$
- Probe D5 wrapping $S^3 \subset T^{1,1}$; dual to $\mathbb{Z}_{2M}^{(0)}$ R-symmetry generator $\mathcal{N}(M^3)$

▶ anti-D5 gives orientation reversal \mathcal{N}^{\dagger}

- On brane-anti-brane pair, tachyon condensation $\rightarrow \sum$ D3-branes
 - ▶ D3 wrapping submanifold; dual to $\widehat{\mathbb{Z}}_M^{(1)}$ symmetry generator $\mathcal{U}(\Sigma^2)$

• $W^5 \times T^{1,1}$ with N D3-branes and M fractional D3-branes; dual to 4d $\mathcal{N} = 1 \mathfrak{su}(M)$ SYM after duality cascade

[Klebanov, Tseytlin], [Klebanov, Strassler]

- Bulk gauge group $\supset \mathbb{Z}_{2M}^{(0)} \times \widehat{\mathbb{Z}}_{2M}^{(2)} \times \mathbb{Z}_M^{(1)} \times \widehat{\mathbb{Z}}_M^{(1)}$
- Pick global form PSU(M): global $\mathbb{Z}_{2M}^{(0)} \times \widehat{\mathbb{Z}}_{M}^{(1)}$
- Probe D5 wrapping $S^3 \subset T^{1,1}$; dual to $\mathbb{Z}_{2M}^{(0)}$ R-symmetry generator $\mathcal{N}(M^3)$

▶ anti-D5 gives orientation reversal \mathcal{N}^{\dagger}

- On brane-anti-brane pair, tachyon condensation $\rightarrow \sum$ D3-branes
 - D3 wrapping submanifold; dual to $\widehat{\mathbb{Z}}_{M}^{(1)}$ symmetry generator $\mathcal{U}(\Sigma^{2})$
- **Purely from branes**, see $\mathcal{N} \otimes \mathcal{N}^{\dagger} \sim \sum \mathcal{U}!$

Thomas Waddleton

Brane Fusion Frenzy

5 / 5

 Found fusion algebra of all possible Dp-branes dual to symmetry operators in the bulk gauge theory

- Found fusion algebra of all possible Dp-branes dual to symmetry operators in the bulk gauge theory
- Understood fusion $\mathcal{N}_a \otimes \mathcal{N}_b \simeq \mathcal{A} \otimes \mathcal{N}_{a+b}$ in terms of worldvolume modes of the D*p*-branes
 - Number of branes
 - Center-of-mass modes
 - Relative modes



- Found fusion algebra of all possible Dp-branes dual to symmetry operators in the bulk gauge theory
- Understood fusion $\mathcal{N}_a \otimes \mathcal{N}_b \simeq \mathcal{A} \otimes \mathcal{N}_{a+b}$ in terms of worldvolume modes of the D*p*-branes
 - Number of branes
 - Center-of-mass modes
 - Relative modes
- Orientation of D*p*-branes relative to conformal boundary \Rightarrow choice of global form (*More Forthcoming*!)

- Found fusion algebra of all possible Dp-branes dual to symmetry operators in the bulk gauge theory
- Understood fusion $\mathcal{N}_a \otimes \mathcal{N}_b \simeq \mathcal{A} \otimes \mathcal{N}_{a+b}$ in terms of worldvolume modes of the D*p*-branes
 - Number of branes
 - Center-of-mass modes
 - Relative modes
- Orientation of D*p*-branes relative to conformal boundary \Rightarrow choice of global form (*More Forthcoming*!)
- Beginning to understand the bulk structure of all symmetry operators
 - Should be (higher) fusion categories [Copetti, Del Zotto, Ohmori, Wang], [Bhardwaj, Bottini, Schafer-Nameki, Tiwari]

Thank You!

