Future Astrophysical Targets for Intensity Interferometry Neal Dalal, Marios Galanis, Charles Gammie, Samuel Gralla, Norman Murray

- Similar to interferometry in the radio or millimeter band (amplitude interferometry) • Use large base lines **B** and short wavelengths λ to get high angular resolution
- - $\theta \sim \lambda/B$
 - $\lambda \sim 5000$ angstroms or 5×10⁻⁵ cm, B ~ 10⁴ km, $\theta \sim 0.01 \mu$ arcseconds
 - AGN disks $R_s \sim 3x10^8$ km, D ~ 100Mpc, $\theta \sim 20\mu$ arcseconds
 - Stellar disks $R_{\odot} \sim 7 \times 10^{10}$ cm, D ~ 10 pc, $\theta \sim 0.5$ milliarcseconds
 - Can get many resolution elements across the stellar disk

• Use two or more telescopes separated by **B**

• $\mathbf{B} = \mathbf{B}_{\perp} + (\mathbf{B} \cdot \mathbf{n}) \mathbf{n}$ $\mathbf{B}_{\perp} / \lambda \equiv (\mathbf{u}, \mathbf{v})$

- Record the arrival times of photons (intensity $I(t)=|E(t)|^2$) at each telescope
- At some later time, correlate the signals

1. One frequency $E=a e^{i\omega t}$

• Use two or more telescopes separated by **B**

• $\mathbf{B} = \mathbf{B}_{\perp} + (\mathbf{B} \cdot \mathbf{n}) \mathbf{n}$ $\mathbf{B}_{\perp/\lambda} \equiv (\mathbf{u},\mathbf{v})$

- Record the arrival times of photons (intensity $I(t)=|E(t)|^2$) at \Box each telescope
- At some later time, correlate the signals
 - 1. One frequency $E=a e^{i\omega t}$
 - 2. Two frequencies $E = a_1 e^{i\omega_1 t} + a_2 e^{i\omega_2 t}$

• Use two or more telescopes separated by **B**

• $\mathbf{B} = \mathbf{B}_{\perp} + (\mathbf{B} \cdot \mathbf{n}) \mathbf{n}$ $\mathbf{B}_{\perp/\lambda} \equiv (\mathbf{u},\mathbf{v})$

- Record the arrival times of photons (intensity $I(t)=|E(t)|^2$) at \Box each telescope
- At some later time, correlate the signals
- 1. One frequency $E=a e^{i\omega t}$
- 2. Two frequencies $E = a_1 e^{i\omega_1 t} + a_2 e^{i\omega_2 t}$
- 3. Sum of many frequencies

 $E = \Sigma_j a_j e^{i\omega_j t}$

- The count rate of photons can vary by order unity
- Nearby AGN will have count rates of 10⁶ photons per second

1. This is not shot noise!

Hanbury Brown and Twiss measured the correlation at different separations d, ranging from 2.5 to 9.2 meters, to find the angular size of Sirius, 0.0063" Note that the correlation of an extended source falls off more rapidly than that of a point source

Base-line d = $|\mathbf{B}_{\perp}/\lambda| = |(\mathbf{u},\mathbf{v})|$

Fig. 2. Comparison between the values of the normalized correlation coefficient $\Gamma^{2}(d)$ observed from Sirius and the theoretical values for a star of angular diameter 0.0063". The errors shown are the probable errors of the observations

Photon correlations

To maximize SNR, we want lots of photons and precise timing.

Slide credit: Neal Dalal

SPADs

Single Photon Avalance Diodes

Home > Products > Optical sensors > 🗎

MPPCs (SiPMs) / SPADs

MPPC (Multi-Pixel Photon Counter) is a device called SiPM, which is a photon counting device that is a multi-pixelized Geiger mode APD. While it is an optical semiconductor device, it has an excellent detection ability, so this device can be used in a variety of applications to detect very low-level light at the photon counting level.

Hamamatsu's SPAD (Single Photon Avalanche Diode) is an element with a structure of a single pixel that combines a Geiger mode APD and a quenching resistor into one set. It is an optical semiconductor element that enables photon counting.

\ge

SPADs

Single Photon Avalance Diodes

www.advancedsciencenews.com

www.advquantumtech.com

Superconducting Nanowire Single Photon Detector Rev. Sci. Instrum. 82, 071101 (2011)

FIG. 8. (Color online) A section of a superconducting nanowire singlephoton detector is shown with a bias current just below the critical current density that would drive the wire normal. (a) An incoming photon creates a small normal region within the nanowire. (b) The superconducting current is expelled from the normal region, increasing the current density in the adjacent areas of the nanowire. (c) That increase in current density is enough to drive those adjacent regions normal, which in turn results in a measurable voltage drop across the detector.

SNSPDs

Eisaman+ 2024

Superconducting Nanowire Single Photon Detector Array

Fig. 1 | Overview of the 800 × 500 camera. a, Imaging at 370 nm, with raw time-delay data from the buses shown as individual dots in red and binned 2D histogram data shown in black and white. **b**, Count rate as a function of bias current for various wavelengths of light as well as dark counts. c, False-colour scanning electron micrograph of the lower-right corner of the array,

<u>Oripov+ 2023</u>

highlighting the interleaved row and column detectors. Lower-left inset, schematic diagram showing detector-to-bus connectivity. Lower-right inset, close-up showing 1.1- μ m detector width and effective 5 × 5- μ m pixel size. Scale bar, 5 µm.

Superconducting Nanowire Single Photon Detector Array

Fig. 2 | Electrical operation of the detectors and readout bus. a, Circuitdetermined by a time-of-flight readout process based on the time-of-arrivaldiagram of a bus and one section of 50 detectors with ancillary readoutdifference $t_2 - t_1$. b, Oscilloscope traces from a photon detection showingcomponents. SNSPDs are shown in the grey boxes and all other components arethe arrival of positive (green) and negative (red) pulses at times t_1 and t_2 ,placed outside the imaging area. A photon that arrives at time t_0 has its locationrespectively.

<u>Oripov+ 2023</u>

Possible Astrophysical Targets

- AGN
- Resolved Asteroseismology
- Photon rings
- Tidal Disruption Events
- Supernovae

Possible Astrophysical Targets

- AGN
 - Disk angular size
 - Measure H_0
 - Disk scale height
 - Thin versus thick
 - Map Broad Line Region
 - Determine where outflows emerge
- Resolved Asteroseismology
 - 2D power spectra (velocity versus l)
 - Run of Temperature
 - Rotational splitting \Rightarrow Internal differential rotation

Geometric measurement of H₀

AGN Broad Line Region

Credit: Neal Dalal

AGN variability

- AGN luminosity varies over time, for both continuum and lines.
- But line variability lags the continuum variability.
- Time lags can be days months

Credit: Neal Dalal

Bentz et al. (2021)

Measuring H₀

- Time lags between line variability & continuum variability tell us physical size of line-emitting region.
- Interferometry tells us the angular size of the same line-emitting region (same photons)
- Comparing the two tells us the angular diameter distance to the AGN
- Since these are line emitters, we also have redshift
- Distance + redshift = H_0

Credit: Neal Dalal

For AGN science, all these numbers are interesting!

Credit: Neal Dalal IRAS 09149-6206 24hours, CTA-sized array

Distance is interesting for cosmology

AGN: Thin Disks?

AGN: Thin Disks?

FIG. 3.—Composite quasar spectrum using median combining. Powerlaw fits to the estimated continuum flux are shown. The resolution of the input spectra is ≈ 1800 , which gives a wavelength resolution of about 1 Å in the rest frame.

Ferrarese & Merritt 2000 BAL Outflows & Galaxy Evolution

FIG. 2.—BH mass vs. the central velocity dispersion σ_c of the host elliptical galaxy or bulge (filled circles) or the rms velocity $v_{\rm rms}$ measured at one-fourth of the effective radius (open circles). Crosses represent lower limits in $v_{\rm rms}$. The solid and dashed lines are the best linear fits using σ_c (as in Fig. 1b) and $v_{\rm rms}$, respectively.

BAL Outflows

BAL Outflows

- Wind luminosity = $1/2 \text{ dM/dt } v^2 = 1/2 \Omega R^2 \rho v^2$
- Momentum loss rate = $dM/dt v = \Omega R^2 \rho v$
- Measure v directly
- Estimate p
- Need R

Asteroseismology Internal differential rotation

- Solar dynamo is driven by differential rotation
- Stellar magnetic fields produce xrays and the bulk of the UV flux
- X-rays and UV evaporate protostellar disks
- X-rays and UV can strip planetary atmospheres

Larson & Schou (2018)

29 Page 26 of 28

T.P. Larson, J. Schou

Figure 29 Internal rotation (*left*) and the corresponding errors (*right*) derived from the MDI full-disk analysis averaged over all Dynamics Runs. We have erased color from the regions where estimates of rotation are deemed unreliable; contours are retained on the left for ease of labeling.

Figure 30 Internal rotation (*left*) and the corresponding errors (*right*) derived from an average over the first six years of the HMI 72-day analysis. We have erased color from the regions where estimates of rotation are deemed unreliable; contours are retained on the left for ease of labeling.

Helioseismology **Internal differential rotation**

230 M. LAZREK ET AL. 10⁰ Power Density ((m/s)^2/Hz) 10³ 102 10 3000 4000 1000 2000 5000 6000 Frequency (μ Hz)

Figure 1. The acoustic p-mode spectrum of the Sun, as measured using the first eight months of GOLF data. At 3 mHz the ratio S/N is \sim 3000.

• Resolved stellar oscillation velocity power spectra

Helioseismology

Internal differential rotation

Helioseismology

Internal differential rotation

SOLAR *p*-MODE FREQUENCY SPLITTINGS

Frequency, μ Hz

1093

Libbrecht 1989

Helioseismology **Internal differential rotation**

Figure 3 Lower turning points for p modes of a solar model, determined by the vanishing Ray paths in the standard model of the sun represented by the continuous line in Figure 2 of κ , plotted against degree *l* for the three cyclic frequencies $v = \omega/2\pi = 2, 3, 4$ mHz. The Figure 1: (a) for two acoustic waves; the more deeply penetrating wave is p_8 (l = 2) and the curves for 2 and 3 mHz terminate at the lowest-order modes, at values of l determined by shallower wave is p_8 (l = 100); (b) for the gravity wave g_{10} (l = 5). Note that the number of Equation 3.2 with n = 1. reflections per revolution is not integral, and indeed is almost never rational, so the ray paths

Helioseismology Sound speed v. R

Figure 2 Ray paths in the standard model of the sun represented by the continuous line in Figure 1: (a) for two acoustic waves; the more deeply penetrating wave is p_8 (l = 2) and the shallower wave is p_8 (l = 100); (b) for the gravity wave g_{10} (l = 5). Note that the number of reflections per revolution is not integral, and indeed is almost never rational, so the ray paths

Fig. 3. The dashed curve is the square of the spherically averaged sound speed in the sun. The solid curve corresponds to a standard theoretical model. The magnitudes of the slopes of the curves are lower immediately beneath the convection zone, where the temperature gradient is too small to drive the instability. The inset shows that the convectively unstable region of relatively high slope extends somewhat more deeply into the sun than it does in the model.