

31st October 2024

SNSPD Opportunities for Intensity Interferometry

Boris Korzh University of Geneva, Switzerland

boris.korzh@unige.ch bkorzh@caltech.edu

Superconducting nanowire single-photon detector (SNSPD)

Single-pixel detector

Goltsman, et al, APL 79, 705 (2001)

No need for full 'Foundry' process like SPADs → Easier to **tailor the devices for astronomy community**

Some select fabrication facilities (Academic and National Lab):

- Jet propulsion Lab, CA, USA
- NIST, Boulder, CO, USA
- MIT Nano, MA, USA
- NICT, Japan
- SIMIT, China
- EPFL, CMi, Switzerland
- TU Delft, Netherlands
- KIT, Germany
- KTH, Sweden
-

Record timing accuracy

Probing the intrinsic timing jitter for first time (not limited by readout electronics)

Korzh, Zhao, Allmaras, Frasca et al Nature Photonics 14, 250-255 (2020)

Differential readout

Zhao, Qing-Yuan et al, *Nature Photonics* **11**, 247 (2017) Colangelo, Korzh, Allmaras, Beyer *et al*, *PRApplied* **19**, 044093 (2023) **JPL**

Practical single-pixel detectors

Colangelo, Korzh, Allmaras, Beyer et al, PRApplied 19, 044093 (2023)

Combined metrics for fiber coupled detectors

2

Colangelo, Korzh, Allmaras, Beyer *et al*, *PRApplied* **19**, 044093 (2023) Mueller, Korzh, Runyan *et al*, *Optica* **8**, 1586 (2021)

Wavelength multiplexing around 1550 nm

Mueller, Davis, Korzh, Valivarthi et al, Optica Quantum 2, 65 (2024)

Wavelength multiplexing

c) C. S Channels x16 Channels Channels 1.0 Raw Spectrum Smoothed Spectrum 0.8 Intensity (a.u.) 60 0.2 0.0 1440 1490 1540 1590 1640 Wavelength (nm)

>40 channel fiber-coupled DWDM modules are commercially available

Mueller, Davis, Korzh, Valivarthi et al, Optica Quantum 2, 65 (2024)

Future detector architecture

Pathway to 100 – 10,000 channels

How do we make a camera?

So far, most experiments only had access to single/few pixels...

Time-domain multiplexing

v_{ph} ≈ 0.01c (3 µm/ps) velocity helps us out this time!

→ 10 ps timing resolution enables 15 µm pixels to be resolved

400,000 pixel camera

Initially *developed for photon starved* applications:

• Extreme/deep-UV Astrophysics, Earth-like exo-planet imaging

Oripov, Rampini, Allmaras, Shaw, Nam, Korzh, and McCaughan, Nature 622, 730 (2023)

Fabricated at **NIST**

400,000 pixel camera

Largest superconducting camera by x20

Future work

- Boost efficiency and sensitivity to long wavelength photons
- Increase count rates for practical applications

Oripov, Rampini, Allmaras, Shaw, Nam, Korzh, and McCaughan, Nature 622, 730 (2023)

Expect broadband efficiency in future devices

Optical simulations

Large area 'bucket' detectors

Fabricated with photolithography to better scalability

Goal: Superconducting analog of siliconphotomultiplier (Si-PM) and PMT ...expected to reach x100 current active area

Luskin, Schmidt, Korzh, Beyer et al, Appl. Phys. Lett. 122, 243506 (2023)

Considerations for Intensity Interferometry

Better to avoid rowcolumn architecture due to count rate limitation

Can could reach 10-50 Mcps per bus

Considerations for Intensity Interferometry

Likely the best shape?

What would be useful in a phased approach?

	Number of channels	Count rate
Phase 1	256	100 Mcps
Phase 2	1,024	500 Mcps
Phase 3	4,096	3 Gcps

Timing jitter

Thermal transduction expected to dominate

McCaughan, Zhai, Korzh, Allmaras et al, APL 121, 102602 (2022)

- In certain regimes it is already <100 ps (FWHM)
- Currently limited by single-ended coupling to heaters
- Versions being fabricated since, have implemented differential coupling

Timing jitter

1:X = 2.0042μm 2:X = 1.2700μm 3:Y =0.50602μm 2 um nominally 1.5 um 0.5 um 10³ jitter (FWHM, ps) ₅01 pulse length 1 ns Expected signal 50 ns at heater 12.6 ps FWHM 10¹ 25 75 100 125 175 200 50 150 0 Amplitude (a.u.)

Differential heater test structure

15-30 ps FWHM jitter looks feasible

Practical cryogenics

'Hanging' cryostat with cans

Mueller, Korzh, Runyan et al, Optica 8, 1586 (2021)

'Bottom referenced' cryostat with panels

- Easy coupling to optical table
- Off-the-shelf components where possible
- Vibration isolation
- Cost: <USD 50K in raw parts for 3 K version
- Design will be made open-source after validation
 Slide 19

Summary

- SNSPDs provide a **flexible platform** for detector optimization
- Single pixel fibre-coupled devices
 - **Timing jitter <15 ps** for Fourier-limited timing
 - 775-1550 nm demonstrated
- Future devices could hit the requirements for intensity interferometry
 - Sensitivity bands: 200-500 nm, 400-1000 nm, 1000-1600 nm
 - High count rates: >1 Gcps
 - Number of channels: >1,000
 - Or multimode collection like PMT
 - Timing jitter: <30 ps
- Scalable free-space cryogenics are now available

Please send us your wishes and we'll make them $\textcircled{\mbox{$\odot$}}$

