# Supernova Morphology & H<sub>0</sub>

## with Intensity Interferometry

#### I-Kai Chen 11/01/2024

w/ David Dunsky, Junwu Huang, Ken Van Tilburg, Bob Wagoner



## Overview

- Learn about ejecta, photosphere shape and property of spectrum
- Bright supernova distance to calibrate "standard candles"
- Distance ladder free hubble measurement

















**Figure 12.**  $H_{\alpha}$  P-Cygni profile evolution in SN 1992ba. The epochs are labeled<sup>0</sup> on the right.

## P Cygni Profile with Spatial Resolution

3D spatial distribution of ejecta: x, y (image plane), & λ (line-of-sight)



## P Cygni Profile with Spatial Resolution

3D spatial distribution of ejecta: x, y (image plane), &  $\lambda$  (line-of-sight)



## P Cygni Profile with Spatial Resolution

**3D spatial distribution of ejecta: x, y** (image plane), &  $\lambda$  (line-of-sight)



### Supernova Morphology - Asymmetry



## Measure Supernova Distances

History: Expanding Photosphere method (Baade 1926, Krishner & Kwan 1974)



## Measure Supernova Distances

History: Expanding Photosphere method (Baade 1926, Krishner & Kwan 1974)



## Measure Supernova Distances

History: Expanding Photosphere method (Baade 1926, Krishner & Kwan 1974)

17



## Intensity Interferometry: Expanding Ejecta Method



## Intensity Interferometry: Expanding Ejecta Method



## Intensity Interferometry: Expanding Ejecta Method





**v**<sub>0</sub>: velocity of ejecta @ photosphere



**v**<sub>0</sub>: velocity of ejecta @ photosphere



#### Line parameters

- τ<sub>0</sub>: line optical depth @ photosphere
- **n**: spectral index of optical depth

vo: velocity of ejecta @ photosphere



#### Line parameters

- τ<sub>0</sub>: line optical depth @ photosphere
- **n**: spectral index of optical depth

#### **Geometric parameters**

- $\eta$ : long-to-short axis ratio
- **θ**, **φ**: two Euler angles

**Parameters:** 

- **v**<sub>0</sub>: velocity of ejecta @ photosphere
- τ<sub>0</sub>: line optical depth @ photosphere
- **n**: spectral index of optical depth as a function of distance to photosphere
- D: distance
- $\eta$ : long-to-short axis ratio
- θ, φ: two Euler angles

#### Two other spectral parameters:

- T: black body temperature
- **norm**: scaling of spectrum accounting for attenuation

## **Analysis Pipeline**



## Scenario: A Type II-P Supernova @ Plateau Phase

## • Parameter evolution:

- Photosphere location: constant
- Homologous expansion:  $v_0 \sim t^{-1}$ 
  - $\tau_0 \sim t^{n-2}$
- Measured @ 3 different time point

| n = 4          | 30 days    | 45 days    | 60 days    |
|----------------|------------|------------|------------|
| V <sub>0</sub> | 6,000 km/s | 4,000 km/s | 3,000 km/s |
| τ              | 2.0        | 4.5        | 8.0        |



## Scenario: A Type II-P Supernova @ Plateau Phase

### Fisher information with intensity interferometer + spectrum:

- Supernova:
  - M = -16.0
  - D = 1 Mpc, m = 9.5
- Interferometer parameters:
  - $\boldsymbol{\sigma}_{t} = 10 \text{ ps}$
  - $\circ$  R<sub>spec</sub> = 10<sup>4</sup>
  - 1000 channels
  - Diameter = 10 m
  - SNR ~ 5 per channel

 $\circ$  T<sub>obs</sub> = 6 hrs





## Fisher information with intensity interferometer

 Intensity interferometer measures angular size well (v<sub>0</sub>/D)

**Geometric parameters** 

Line profile parameters



## Fisher information with intensity interferometer

 Intensity interferometer measures angular size well (v<sub>0</sub>/D)

**Geometric parameters** 

Line profile parameters



Fisher information with intensity interferometer & spectrum:

- Spectrum gives better measurement on some parameters (v0, τ0, n, η, θ)
- Spectrum give no information about distance and φ



## Fisher information with intensity interferometer & spectrum:

 Combine intensity interferometry & spectrum give better distance measurement on fainter supernovae

## Results: Hubble Measurement (bright SN)



 Measure distance of the brightest SN to
~1% with a few night of exposure

 Calibrate the distance ladder with bright SN

## Results: Hubble Measurement (bright SN)



 Measure distance of the brightest SN to ~1% with a few night of exposure

 Calibrate the distance ladder with bright SN

## Results: Hubble Measurement (bright SN)



 Measure distance of the brightest SN to ~1% with a few night of exposure

 Calibrate the distance ladder with bright SN

## Results: Hubble Measurement (standard candle free)



Optimal observation strategy based on SN occurance

### Results: Hubble Measurement (standard candle free)



Measure Hubble to ~1% with a decade of operation (independent of distance ladder)

## Summary

- Learn about ejecta, photosphere shape and property of spectrum
- Bright supernova distance to calibrate "standard candles"
- Distance ladder free hubble measurement

## Summary

- Intensity Interferometry measures the spatial distribution of supernova ejecta
  - Supernova shape
  - Angular diameter distance
- We built a analysis pipeline to demonstrate the measurement
  - ~1% distance measurement to bright supernova
  - ~1% Hubble measurement with a few years of operation

## Light curve of II-P



## Optimal observation strategy of SN for Hubble d [Mpc]



41