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Abstract

It is well known that alternative theories to the Standard Model allow
fundamental constants, such as the fine structure constant, to vary in
spacetime. One way to investigate these variations is to utilize the Mass-
Radius relation of compact objects, which is inherently affected by α
variations. As such, we initially construct the model of a polytropic
white dwarf, which we perturb by adding the α variations for various
GUT models. We continue our analysis with neutron stars, investigating
both polytropic and more realistic equations of state. We outline how
future observations might distinguish between extensions of the Standard
Model.



Περίληψη

Είναι ευρέως γνωστό ότι τα Καθιερωμένα Πρότυπα τόσο της Κοσμολογί-
ας, όσο και της Σωματιδιακής Φυσικής αδυνατούν να εξηγήσουν πλήρως
μέχρι τώρα κάποια παρατηρούμενα φαινόμενα. Έτσι, η επιστημονική
κοινότητα καταφεύγει σε επεκτάσεις τους ή ακόμα και εναλλακτικές
θεωρίες για να τα εξηγήσει. Από την πλευρά της Κοσμολογίας, η χρήση
βαθμωτών πεδίων (scalar fields) συνεισφέρει σημαντικά στην ερμηνεία
του Πληθωρισμού, ενώ οδήγησε ήδη την προηγούμενη δεκαετία στην
ανακάλυψη του μποζονίου Higgs. Αναπόφευκτη συνέπειά τους είναι
παράλληλα η εμφάνιση χωροχρονικών και τοπικών διακυμάνσεων των
θεμελιωδών σταθερών. Στην παρούσα διατριβή, επικεντρωνόμαστε στη
σταθερά λεπτής υφής α, η οποία αποτελεί μέτρο της ισχύος της ηλεκτρα-
σθενούς αλληλεπίδρασης.

Έχοντας αποδειξεί πειραματικά ότι η ισχύς των θεμελιωδών αλληλεπι-
δράσεων μεταβάλλεται με την ενέργεια, ερευνητές καταφεύγουν σε μια
νέα ομάδα θεωριών, τις Μεγαλοενοποιημένες Θεωρίες, οι οποίες υποστη-
ρίζουν την ενοποίηση των ισχυρών με τις ηλεκτρασθενείς αλληλεπιδρά-
σεις στις υψηλές ενέργειες. Θα μελετήσουμε 3 τέτοια παραδείγματα
θεωριών που καλύπτουν μεγάλο εύρος του παραμετρικού χώρου αυτών
των μοντέλων.

Από την άλλη έχουμε αστρικά πτώματα όπως λευκοί νάνοι και αστέρες
νετρονίων που αποτελούν σημαντικά εργαστήρια και πηγές δεδομένων
για τους ερευνητές, λόγω των ακραίων συνθηκών που τους χαρακτηρίζει.
Οι πρώτοι αποτελούνται από άνθρακα και οξυγόνο συμπιεσμένο σε
πυκνοτητες πολύ μεγαλύτερες από τους συνήθεις αστέρες. Παράλληλα,
οι πιέσεις που επικρατούν στους αστέρες νετρονίων αναγκάζουν τις
πυρηνικές δομές να διαλυθούν, δημιουργώντας μια θάλασσα από νετρόνι-
α, πρωτόνια και ηλεκτρόνια. Η δυναμική τέτοιων αστέρων περιγράφεται
από τις εξισώσεις Tolman-Oppenheimer-Volkov (TOV) σε συνδυασμό
με μία καταστατική εξίσωση. Ίσως το σημαντικότερο παρατηρούμενο
χαρακτηριστικό τους είναι η σχέση Μάζας-Ακτίνας, η οποία επηρρεάζεται
σε μεγάλο βαθμό από διακυμάνσεις της σταθεράς λεπτής υφής και των
Μεγαλοενοποιημένων Θεωριών. Συνεπώς αποτελεί ιδανικό εργαλείο για
τους σκοπούς της παρούσας έρευνας.

Μπορούμε να μοντελοποιήσουμε έναν πολυτροπικό λευκό νάνο στα
πλαίσια Μεγαλοενοποιημένων Θεωριών (με την προσθήκη βαθμωτού
πεδίου που επιτρέπει χωροχρονική διακύμανση του α), διαταρράσσοντας
τις εξισώσεις TOV στο σχετικιστικό και μη σχετικιστικό όριο. Αυτό



μας το επιτρέπει η καταστατική εξίσωση (πολυτροπική), η οποία έχει
αναλυτική μορφή. Στην περίπτωση που επιθυμούμε να επαναλάβουμε
τη διαδικασία με καταστατική εξίσωση σε αριθμητική μορφή, όπως θα
επιχειρήσουμε με αστέρες νετρονίων, το πρόβλημα γίνεται αδύνατο να
επιλυθεί με την υπάρχουσα μεθοδολογία. Συνεπώς καταφεύγουμε σε
προσεγγιστικές σχέσεις Μάζας-Ακτίνας και στην ανάπτυξη κώδικα στη
γλώσσα Python, για να καταστεί δυνατή η αριθμητική επίλυση του
προβλήματος.

Τα αποτελέσματα που λαμβάνουμε χαρακτηρίζονται από συνοχή, γεγονός
που αποδεικνύει τη συστηματικότητα της μεθοδολογίας που ακολουθού-
με. Παρόλα αυτά, υπάρχει αρκετός χώρος για βελτίωση και επέκταση
της ανάλυσης μας σε άλλα μοντέλα καταστατικών εξισώσεων και ευρύτε-
ρο παραμετρικό χώρο όσον αφορά τις Μεγαλοενοποιημένες Θεωρίες.
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1

Symbols and formalism

Symbol Description Value
α Fine structure constant
γ Polytropic exponent 1 + 1

n

ϵ Energy density
ρ Matter density
(any quantity)∗ Planck units
c Speed of light 299792458 ms−1

G Gravitational constant 6.6743× 10−11m3kg−1s−2

h̄ Reduced Planck constant 1.05457182× 10−34m2kgs−1

M(r) Mass enclosed within radius r
me Electron mass 9.1093837× 10−31kg
mn Neutron mass 1.674927471× 10−27kg

mN Nucleon mass mp+mn

2

mp Proton mass 1.67262192× 10−27kg
Msolar,sun,⊙ Solar Mass 1.9891× 1030kg
p Pressure
R Total radius of the star
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2

Introduction

The quest to understand the fundamental laws of physics has driven sci-
entific inquiry for centuries. From the classical mechanics of Newton to
the quantum mechanics and relativity of the 20th century, physicists have
continually sought to unify and explain the forces governing the universe.
One of the most ambitious goals in this attempt is the formulation of
Grand Unified Theories (GUTs), which aim to merge the electromagnetic,
weak, and strong nuclear forces into a single framework. Additionally,
the investigation into the constancy of fundamental constants, such as
the fine structure constant (α), forms a crucial part of this pursuit.

Compact objects such as white dwarfs and neutron stars serve as natural
laboratories for probing these deep questions. These remnants of stellar
evolution are characterized by extreme conditions of density, gravity, and
magnetic fields, providing physicists with an excellent probe for testing
theories not only in fundamental physics but also in astrophysics, cos-
mology, nuclear physics, magnetohydrodynamics, and solid-state physics.

Despite advances in theoretical physics, experimental verification of GUT
predictions is still limited. This thesis aims to address this issue by uti-
lizing the research capabilities that compact objects can offer within this
context. Specifically, our main goals are:

▶ To determine how these fundamental theories combined with a vari-
ation of the fine structure constant affect the properties of compact
objects.

▶ To test GUT models in the extremities of a compact object’s interior

9



and attempt to constrain them.

In the following Chapters, we will begin our analysis by first explain-
ing the theoretical background behind varying couplings and unification
(Chapter 3), and the dynamics of compact objects (Chapter 4). Then, we
will move on to investigate a toy model of a white dwarf (Chapter 5), to
gain some intuition before we move on to a more realistic neutron star
model (Chapters 6, 7).
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3

Unification and Varying
couplings

A wide and fast-growing range of observational data has so far validated
the Standard Model of particle physics and that of cosmology (ΛCDM).
Nevertheless, evidence for dark matter and other phenomena such as in-
flation, neutrino masses, and the size of the baryon asymmetry in the
universe require new physics beyond the current model. This is a hot
topic in both fields at the moment, with theorists striving to come up with
extensions or even alternative models to the standard ones. Their main
objective is to test fundamental laws and symmetries such as the Equiv-
alence Principle and Lorentz invariance, to determine possible violations
and inconsistencies. In search of a way to explain dark matter, dark
energy, and other enigmas, novel particles, cosmological scalar fields,
magnetic monopoles, and fundamental strings are also introduced.

1. Scalar fields

Scalar fields nowadays are considered an essential component of many
theories, due to their simplicity combined with their effectiveness. They
can preserve Lorentz invariance while simultaneously taking a vacuum
expectation value, which is impossible for other fields such as vector
fields or fermions. But probably the most important argument to take
into account is the fact that they have been experimentally proven to
exist. The discovery of the Higgs particle, a product of the Higgs scalar
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field, in 2012 by the ATLAS and CMS experiments at the Large Hadron
Collider (LHC) at CERN, significantly popularized their implementation
in models. This discovery also proved that scalar fields can be relatively
easy to trace using observations and experiments, compared to other
degrees of freedom, since they imply the production of additional particles
and measurable effects. Some notable examples of them include [1]:

▶ Inflation, which is believed to have created the primordial density
fluctuations that we now observe as large-scale cosmic structures.

▶ Cosmological phase transitions and their relics, such as cosmic
strings, magnetic monopoles, and domain walls

▶ An alternative to Einstein’s cosmological constant Λ, known as
dynamical dark energy

▶ The space-time and local variation of nature’s fundamental
couplings, which is an unavoidable result in many extensions of
the Standard Model of particle physics when there is a scalar field
coupled to it.

2. Varying fundamental couplings and Interac-
tions

The last, but vastly important result of scalar fields will be the main topic
of our analysis in the following chapters. It is commonly known that
dimensionless couplings run with energy. A straightforward example of
this behavior is the fine structure constant, whose low-energy limit is
approximately α = 1

137
, which in the relativistic limit equals 1

127
. This

occurs due to vacuum polarization (QED), which suggests that the vac-
uum is not just empty space, but is filled with virtual particle-antiparticle
pairs that form and annihilate. These pairs screen the charge of an elec-
tron, leading to a modification of the electromagnetic force at different
distances. So in smaller distances (higher energies), the screening effect
becomes less effective, causing the observed value of α to increase. In
many extensions of the Standard Model, such couplings also roll in time
and ramble in space. Measurements of these variations could potentially
be used as probes for fundamental cosmology.
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Interaction Coupling Strength Relative Strength Range
Strong αs ~10−1 1038 10−15

Electromagnetic αem = α = e2

h̄c
1

137
1036 ∞

Weak αw ~10−5 1033 10−18

Gravity αg =
Gm2

p

h̄c
~10−38 1 ∞

3.1: Fundamental forces ranked by their strength relative to gravity. The
electromagnetic coupling is the known fine structure constant and the
mediator of the gravitational interaction is the hypothetical graviton.

As explained above, if a scalar field is coupled to the Lagrangian of
the model, that results in varying couplings. In particular, if the field
couples to the electromagnetic part of that Lagrangian for example, it
induces a variation in α, formulated as such:

∆α

α
(z) =

α(z)− α0

α0

(3.1)

with α0 being the present-day value of α.

The objective of this thesis is to investigate spacetime variations of cou-
plings related to fundamental forces. In our current understanding of
the universe, there are 4 fundamental forces, namely: gravitational, elec-
tromagnetic, strong, and weak nuclear force. The first two are strongly
evident in our everyday reality (Earth’s gravitational field and electro-
magnetic radiation) while the rest are related to subatomic processes like
nuclear stability and β decay. The way they couple to a particle changes
depending on its properties but also the type of interaction involved. Con-
sequently, every force has a distinct parameter indicating its strength, the
coupling. This strength for every interaction can be seen in Table [3.1],
relative to the gravitational force which is, by convention, set to unity.

Apart from variations with energy, which will be discussed below, spatial
and local variations are also allowed when a scalar field is coupled to
a Lagrangian. This can be demonstrated mathematically as well. The
Lagrangian component for the scalar field is:

Lϕ =
1

2
ϕ̇2 − V (ϕ) (3.2)

As a result of the field’s coupling to the Lagrangian, and due to the
properties of scalar fields mentioned above (they have a vacuum value
while conserving symmetry), the electromagnetic component for instance
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will include an additional coefficient, dependent on ϕ:

Lem = −1

4
BF (ϕ)FµνF

µν , (3.3)

where ∆α
α

= α(ϕ)
α0

− 1 = 1 − 1
BF (ϕ)

. The same occurs for the rest of the
components in the Lagrangian. We note that the gauge kinetic term
above can be linearized since changes to the standard behavior have to
be small. In some cases the second term in the scalar field Lagrangian
(eq.3.2) depends also on the matter density, leading to local variations
of fundamental constants. As a result, massive objects such as stars or
black holes significantly influence varying α, thus including dependencies
on local conditions and complicating the model. For that reason, we only
focus on energy and spacetime variations.

3. Unification and Grand Unified Theories

The main goal of theorists is to build a simple yet consistent model,
that explains the Universe from the biggest scales to the smallest. In
the past, all fundamental interactions were modeled by separate theories
that couldn’t be united, for example, General Relativity for gravity and
Quantum Electrodynamics for electromagnetism. However, in 1979 Ab-
dus Salam, Sheldon Glashow, and Steven Weinberg were awarded the
Nobel Prize in Physics for proving the unification of electromagnetic and
weak interaction at high energies. Later this was also demonstrated with
experiments, thus cementing the validity of this new electroweak theory.
We can visualize the above model using Figure 3.1. Since couplings run
with energy, their inverse will resemble a line, that differs for every cou-
pling. As a result at some energy value, at least two lines will merge and
unify, forming a different line that resembles the unified interaction. In
the case of electroweak force, we know the position of this unification
point on the energy axis to be at 100 GeV. In Figure 3.1, this is the first
point where the blue (α−1

w ) and pink (α−1
em) lines merge into purple.

This was a big step for the scientific community, as our understand-
ing of fundamental forces became simpler and more coherent. Inspired
by this achievement, more theories emerged supporting the unification
of gravity (quantum gravity) and the strong force (QCD) with the elec-
troweak interaction. We will focus on the latter class of models, Grand
Unified Theories. They claim, in a similar manner to the electroweak

14



3.1: Qualitative plot of the inverse couplings as a function of energy.
Note that the x-axis (E) is in logarithmic scale.

theory, that there must be some energy point, higher than electroweak
unification, that the electroweak and QCD lines in Figure 3.1 merge to
form a novel electronuclear interaction. Different GUTs assume differ-
ent energies at which unification occurs and are parameterized by R and
S, related to the energy scale at which unification is supposed to occur,
which influences the slopes of the QCD and electroweak lines, respec-
tively. These parameters consequently affect the slopes shown in Figure
3.1 and are typically positive. As a first test in our analysis, we will
use 3 different GUTs that cover a representative portion of the (R,S)
parametric space. These are the following:

▶ Unification scenario with (R = 36, S = 160) [2]

▶ Dilaton scenario with (R = 109.4, S = 0) [3]

▶ UV-Cutoff scenario with (R = −183, S = 22.5) [4]

To conclude, we will investigate 3 GUTs, which along with the presence of
a cosmological scalar field induce spacetime variations in the couplings.
Also, we use the fact that in these models all varying quantities depend
on the α variation, thus simplifying the parametric space of the models
to (R,S,∆α/α). Now we need to find a way to study GUTs in the context
of compact objects, namely white dwarfs and neutron stars.
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4

Compact Objects

Compact objects encompass a diverse array of stellar remnants, ranging
from white dwarfs to neutron stars and black holes. They constitute
the forefront of research, due to their widely unexplained characteristics
that cause extreme internal and external phenomena. With the advance-
ment of technology and new infrastructure, researchers have been able
to observe compact objects using different signals (electromagnetic and
gravitational), which can be valuable to understanding them.

1. Formation

Compact objects are formed through the gravitational collapse of pro-
genitor stars during their final evolutionary stages.[5] Depending on the
initial mass of the star, the outcome of its collapse may vary.
More specifically during the last stages of their life cycle, low to medium-
mass stars (up to about 8 M⊙) exhaust all their hydrogen fuel, and thus
their cores contract and heat up, while their outer layers expand. These
red giant stars now burn helium and heavier elements in their cores
and have lower effective temperatures. The continuously expanding stars
will start to expel their outer layers into space forming a gas nebula
that surrounds them. Eventually, what remains is the dense core, which
gradually cools down to become a white dwarf.
More massive stars (greater than about 8 M⊙) follow a different, and
more violent, evolutionary path. These stars burn through their fuel at
faster speeds due to their higher mass, leading to significantly shorter
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lifetimes. When this occurs, their cores collapse under their own gravity
in such a rapid and intense manner that it triggers a supernova. During
this event, the outer layers of the star are ejected into space, leaving
behind a highly compressed core. Finally, a neutron star is created when
the core collapse is halted due to a mechanism, that will be discussed
below.[6]
In the case of extremely massive stars (greater than about 15 M⊙), gravity
fully dominates and the core collapses into a single point, the black hole.
From now on, we will only refer to the first two compact objects, since
they are the main focus of this thesis.

2. Composition and equilibrium

Being former cores of stars, white dwarfs and especially neutron stars
are extremely dense. They are small in size (about the size of the Earth
and an asteroid respectively), but have masses comparable to that of (or
bigger than) the Sun. Due to their different origin, neutron stars and
white dwarfs have vastly different compositions. The former is primar-
ily composed of densely packed neutrons, along with small fractions of
protons, electrons, and possibly other particles such as muons [7, 6]. The
intense gravitational forces present in their core, cause atomic nuclei
to break down, forming a sea of neutrons. White dwarfs, on the other
hand, are made up of nuclei such as carbon and oxygen, since gravity
isn’t sufficient to break down these atomic structures [5].

It is crucial to point out the dynamics of such objects and the occur-
ring mechanisms against collapse. Unlike normal stars, compact objects
don’t rely on nuclear fusion to generate power and balance gravity. The
mechanism counterbalancing gravitational collapse is electron degeneracy
pressure for white dwarfs and neutron degeneracy pressure for neutron
stars. Since electrons and neutrons are fermions, they abide by Pauli’s
exclusion principle, which states that no two fermions with the same
quantum numbers should exist in the same system. So, as gravity com-
presses matter towards the center, fermions are squeezed into confined
spaces, and their energies become quantized. Eventually, the available
energy levels (energies lower than the Fermi energy) become so closely
spaced that the fermions begin to fill them up completely, reaching a
state of degeneracy. Since fermions cannot jump to higher states, this
phenomenon creates an outward pressure that equalizes the inward pull
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of gravity and stabilizes the star.

In a common star, this interplay between gravity and outward pressure is
explained mathematically by the 4 differential equations of equilibrium
(hydrostatic equilibrium, mass conservation, temperature gradient, and
luminosity gradient dependent on nuclear reactions). In compact objects,
we utilize only 2 of them since energy-generating mechanisms don’t exist
at their cores. These are the following (assuming additional relativistic
corrections):

dp

dr
= −Gρ(r)M(r)

r2

[
1 +

p(r)

ϵ(r)

] [
1 +

4πr3p(r)

M(r)c2

] [
1− 2GM(r)

c2r

]−1

(4.1)

dM

dr
= 4πr2ρ(r) (4.2)

along with the initial conditions: p(0) = pc,M(0) = 0

3. The Polytrope

Additionally, we require a pressure-energy density relation, which takes
into account the state of matter in the interior. This equation of state
differs amongst stars and can be modeled by approximations, as we will
witness in the following chapters. The easiest EoS in terms of calcula-
tions, but also the only one for which there are analytical solutions to
the system, is the polytropic equation of state. This EoS was derived by
Chandrasekhar from the Lane-Emden equation [8]

1

ξ2
d

dξ

[
ξ2
dθn
dξ

]
= −θnn (4.3)

where ρ(r) ≡ ρc[θn(r)]
n and ξ, θn are the dimensionless length and den-

sity respectively, and n is the polytropic index [8]. There are only three
analytical solutions for the Lane-Emden equation, namely the n = 0, 1, 5
cases. In the context of this analysis, we will use Chandrasekhar’s nu-
merical solutions [8] for the non-relativistic (n = 3/2) and relativistic
(n = 3) limits. By solving eq. 4.3 we get the general polytropic equation
p = Kϵγ = Kϵ1+1/n, where ϵ = ρc2 and K is a model-dependent constant.
Considering the above, we get an equation of state for the non-relativistic
case:

p = KNRϵ
5/3, (4.4)
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where

KNR =
h̄
2

15π2me

(
3π2Z

mNc2A

)5/3

(4.5)

whereas for the relativistic case:

p = KRϵ
4/3, (4.6)

with

KR =
h̄c

12π2

(
3π2Z

mNc2A

)4/3

(4.7)

Now that we have considered the properties of matter in the interior by
deriving a p = f(ϵ) relation, we can tackle the TOV equations. Solving
(eq.4.1,4.2) provides us with the Mass-Radius relation of a compact object:

M = 4πc(2n+2)/(n−1)

(
(n+ 1)K

4πG

)n/(n−1)

ξ
(n−3)/(1−n)
1 ξ21 |θ′(ξ1)|R(3−n)/(1−n)

(4.8)
where ξ1 corresponds to the first zero of the dimensionless density θ [8].

4. Observations and measurements

Neutron stars and white dwarfs are excellent laboratories to test our
present knowledge of the fundamental properties of matter under the in-
fluence of strong gravitational and magnetic fields at extreme densities,
isospin asymmetry, and temperature. They offer an interesting inter-
play between nuclear processes and astrophysical observables. The new
generation of space X-ray and γ-ray observatories are enabling new ob-
servations and breakthrough discoveries [6]. Thermal emissions from
isolated neutron stars provide important information on their cooling
history and allow for the determination of their radii. At the same time,
improvements in radio telescopes and interferometric techniques have
increased the number of known binary pulsars, allowing for extremely
precise neutron star mass measurements and tests of general relativity.

After almost sixty years of observations, we have collected an enormous
amount of data on different neutron star observables that include [6]:
masses, radii, rotational periods, surface temperatures, gravitational red-
shifts, quasiperiodic oscillations, magnetic fields, glitches, timing noise,
and very recently, gravitational waves. A large multinational effort has
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taken place in the last decade to build a new generation of gravitational
wave detectors which have been recently rewarded with the exciting ob-
servation of the first signal from the merger of two neutron stars.

The mass-to-radius measurement in neutron stars (and white dwarfs)
is possibly the most important and versatile quantity that we can obtain
from them at the moment. Amongst others, it can be utilized for studies
of matter properties in extreme environments, astrophysical characteris-
tics of compact objects, and tests of fundamental physics (e.g. the Stan-
dard Model and general relativity) [9]. In Fig.4.1, we present constraints
on the mass-radius curve from observational data (both electromagnetic
and gravitational). Mass measurements can be inferred directly from ob-
servations of binary systems and likely also from supernova explosions.
Radii on the other hand are very difficult to measure mainly because
compact objects are very small and far away from us. However, a pos-
sible way to determine them is to use the thermal emission of low-mass
X-ray binaries, additionally considering mass measurements. The major
uncertainties in radius calculation come from the determination of the
temperature, which requires the assumption of an atmospheric model,
and the estimation of the distance of the star.
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4.1: [10] Mass-Radius constraints from neutron star observations. Ver-
tical bars and corresponding colored bars display 1σ mass ranges for
neutron stars in binaries. The brown line shows the upper mass limit
adopted from the GW 170817 measurement. The grey-shaded region is
prohibited due to the ”maximum compactness” criterion. The red-shaded
region is also excluded, due to the speed of sound surpassing the speed
of light in such neutron star cases. The cross-hatched region is formed
by the 90% credible intervals for radii at given NS masses, obtained from
fitting observational data. Thin dashed and dash-dotted 90% credible
contours show similar results, by [11] and [12] respectively.
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5

White Dwarfs

In this section, we will investigate the impact of varying couplings on
white dwarfs. As explained in Chapter 4, white dwarfs are remnant cores
of relatively low-mass stars (< 8M⊙), stabilized by electron degeneracy
pressure. They consist of carbon and oxygen and have a Chandrasekhar
limit of approximately 1.4M⊙. The Chandrasekhar limit is the mass above
which electron degeneracy pressure in the star’s core is insufficient to
balance the star’s own gravitational self-attraction. We will use white
dwarfs as a toy model, to gain some intuition on how varying α affects a
degenerate star, and then move on to the more complicated neutron star
model.

1. Perturbations

Compact objects are comprised of degenerate matter, which mainly con-
sists of electrons and nucleons. As a result, variations in the strength of
the electroweak interaction (or the fine structure constant) slightly shift
the stars’ equilibrium. We can model this as perturbations to the Mass-
Radius relation. So initially, we express the electron and nucleon masses
as dimensionless couplings, by comparing them to the Planck mass:

αi =
Gm2

i

h̄c
, (5.1)

Now we have two choices: either particle masses can vary and the Planck
mass (and therefore G) is fixed, or the opposite happens. In our anal-
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ysis, we assume the first, but the opposite choice would be physically
equivalent (i.e. it would yield the same results for observable quantities,
although it would lead to a more complicated formalism). As a result,
mass variations can be formulated as such:

∆αe

αe

= 2
∆me

me

= (1 + S)
∆α

α
(5.2)

∆αN

αN

= 2
∆mN

mN

= 2[0.8R + 0.2(1 + S)]
∆α

α
(5.3)

These perturbations need to be included in the TOV equations (eq.4.1, 4.2)
as well as the Mass-Radius relation (eq.4.8), which can be accomplished
using the following methodology. We will start with the easiest case of
a polytrope and consider 2 scenarios: the non-relativistic and relativis-
tic. In the next chapters, we expand upon this methodology for other EoS.

At first, we shift to Planck units, since they remain unchanged, and
substitute masses with couplings using eq.5.1 (we note that in the Mass-
Radius relation, only K has a particle mass dependency). In the non-
relativistic case, eq.4.8 becomes:

M1/3
∗ R∗ = QNRα

−1/2
e α

−5/6
N , (5.4)

where QNR is a dimensionless constant. Then, we Taylor expand for both
couplings to add perturbations.(

M∗(α)

M∗,0

)1/3
R∗(α)

R∗,0
= 1− x, (5.5)

where the zero subscript indicates the standard quantity, while x is the
perturbation dependent on the (R,S,∆α/α) model

x =

[
4

3
R +

5

6
(1 + S)

]
∆α

α
(5.6)

Similarly in the relativistic case, we find

M∗ = QRα
−1
N (5.7)

and therefore
M∗(α)

M∗,0
= 1− y (5.8)

where again

y =

[
8

5
R +

2

5
(1 + S)

]
∆α

α
(5.9)
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Applying the same methodology to the non-relativistic TOV equations:

dp∗
dr∗

= −O1
m∗p

3/5
∗

r2∗
α3/10
e α

1/2
N

[
1 +

3

5
x

]
(5.10)

dm∗

dr∗
= O2r

2
∗p

3/5
∗ α3/10

e α
1/2
N

[
1 +

3

5
x

]
(5.11)

and for the relativistic case (without corrections):

dp∗
dr∗

= −O3
m∗p

3/4
∗

r2∗
α
1/2
N

[
1 +

1

2
y

]
(5.12)

dm∗

dr∗
= O4r

2
∗p

3/4
∗ α

1/2
N

[
1 +

1

2
y

]
(5.13)

where x, y are defined in eq.5.6 and 5.9 respectively. It is also important
to note that the above perturbations don’t affect the zero-order term (the
general form of the equations), so we can always revert the equations
back to the original units and add the corrections. Now, observing the
relativistic corrections in the equation of hydrostatic equilibrium (eq.4.1,
4.2), it becomes clear that only the first term has an α dependency. As a
result, it is perturbed as follows for the non-relativistic case:

1 +
p

ϵ
−→ 1 +

Op
2/5
∗

α
3/10
e α

1/2
N

[
1− 3

5
x

]
(5.14)

while for the relativistic case, we get:

1 +
p

ϵ
−→ 1 +

Op
1/4
∗

α
1/2
N

[
1− 1

2
y

]
(5.15)

Now that we have produced the equations describing the behavior of
polytropes under a varying α regime, we can begin testing this model for
various cases.

2. Results

We initially assume an α variation of the order of 10−3 which is small
enough to act as a perturbation. We will investigate bigger values of
dα/α later. We also allow for both positive and negative variations, to
determine if the perturbed models are symmetrical to the unperturbed
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white dwarf. In Figure 5.1, we observe the results for the non-relativistic
as well as the relativistic case for the Unification model (R = 36, S = 160).
Both plots agree on the fact that a negative dα/α increases the mass and
radius of the star, while a positive variation causes the opposite effect.
This phenomenon can be justified since the strength of the electroweak
interaction, and thus the electron degeneracy pressure is related to α. On
the other hand, (R,S) values affect the QCD scale (proton and neutron
masses) and the electroweak interaction respectively. So, a positive vari-
ation of α alone would mean stronger degeneracy pressure and thus lead
to a more massive star. In the unification model, this effect is overshad-
owed by the simultaneous increase in the QCD scale, due to a positive R.
As a result, we observe a decrease in the mass of the white dwarf, since
the mass of individual nucleons is now increased with respect to electron
degeneracy pressure and the star must shed matter to reach equilibrium.
For the relativistic case, it is important to note that the Chandrasekhar
limit is also shifted to lower or higher masses respectively. It is also
clear that perturbed cases in the relativistic model aren’t symmetric to
the unperturbed case. This occurs due to the perturbation added to one
of the correction terms in the hydrostatic equilibrium equation (eq.4.1).

5.1: Mass-Radius relation for the Unification scenario (R = 36, S =
160) in the non-relativistic (left) and relativistic (right) case for positive
and negative variations of α. The relativistic plot also indicates the
Chandrasekhar limit.

A similar behavior can be seen in Figure 5.2, describing results for the
Dilaton case (R = 109.4, S = 0). This time the bigger positive R value
dominates significantly over the alpha variation, causing more exagger-
ated shifts from the unperturbed case. In this model, for a negative α
variation we observe a Chandrasekhar limit at about 1.5M⊙, significantly
bigger than the mass of ZTF J1901+1458, the most massive white dwarf
ever detected (1.327–1.365M⊙) [13]. Thus, so far observations indicate
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5.2: Mass-Radius relation for the Dilaton scenario (R = 109.4, S = 0)
in the non-relativistic (left) and relativistic (right) case for positive and
negative variations of α.

that a Dilaton model with a negative α variation at the 10−3 level is
unrealistic.

The UV-Cutoff scenario (R = −183, S = 22.5) presents us with entirely
different results. In Figure 5.3, we can see that the behaviors corre-
sponding to symmetric α variations are now reversed, with the positive
α variation resulting in an increase in mass and radius. The negative
R value in this model reduces the QCD scale, while for a positive dα/α,
electron degeneracy pressure is increased. The above phenomena have
a cumulative effect on the mass of a star, amplifying the gap from the
standard case in the relativistic white dwarf. On the other hand, the
negative dα/α scenario is the outcome of clashing events, specifically a
decrease both in the degeneracy pressure and the QCD scale.

5.3: Mass-Radius relation for the UV-Cutoff scenario (R = −183, S =
22.5) in the non-relativistic (left) and relativistic (right) case for positive
and negative variations of α.
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5.4: The Chandrasekhar mass limit as a function of the absolute α
variation for the 3 GUT models. Lighter shades indicate a negative α
variation, while darker shades correspond to positive dα/α. Due to code
limitations and the perturbations becoming comparable to the zero-order
term, each GUT model is characterized by a different |dα/α| domain,
where solving the problem is possible. The second Figure is a zoom-in of
the bottom left corner of the first Figure, and the dotted line shows the
unperturbed Chandrasekhar limit.
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This argument justifies the relatively small deviation from the unper-
turbed case, that can be observed for negative dα/α.

A more detailed investigation into the Chandrasekhar mass is shown
in Figure 5.4 where we perform the same analysis as before, with the
exception that now dα/α is a free parameter. As a consistency check,
when dα/α equals 10−3 we recover the same results for the mass limit
as the ones in Figures 5.1, 5.2, 5.3. For increasing absolute α variations,
the first-order term in equations 5.12, 5.13, 5.15 starts becoming compa-
rable to or even bigger than the zero-order term. If this didn’t occur, we
would expect monotonous behaviors for models that are initially below
the standard Chandrasekhar limit as well as more moderate slopes after
some |dα/α| value.
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6

Neutron Stars I: Methodology

1. Perturbations

As derived in the previous Chapter, the Mass-Radius relation in the non-
relativistic limit is the following:

M1/3
∗ R∗ ∝

1

α
1/2
e α

5/6
N

, (6.1)

while for the relativistic limit, we have:

M∗ ∝
1

αN

. (6.2)

Since we are assuming that perturbations are small, we can interpolate
between the two cases to acquire this more general relation:

Mn−1
∗ R3−n

∗ ∝ 1

α
(3−n)/2
e α

(1+n)/2
N

(6.3)

the proportionality factor will depend on the equation of state, which we
will discuss below. So the perturbed case should be(

M∗(α)

M∗,0

)(n−1) (
R∗(α)

R∗,0

)(3−n)

= 1− z (6.4)

where
z =

[
4

5
(n+ 1)R +

17− 3n

10
(1− S)

]
∆α

α
, (6.5)
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from which we can recover the two previous limits. This approach is
purely phenomenological, meaning that the polytropic index or the Mass-
Radius relation as a whole doesn’t necessarily have physical meaning.

From the TOV equations, we also need to parameterize the behavior
of K, and by demanding that it has the correct physical dimensions,
namely m1/ns2/n/(kg)1/n, in addition to the two limits, we can find:

K ∝ h̄
3/n

m
−1+3/n
e m

1+1/n
N c5/n

. (6.6)

A similar interpolation can be done for the TOV equations, which become

dp∗
dr∗

= −O
m∗p

n
1+n
∗

r2∗
α

3−n
2(1+n)
e α

1/2
N (1 + A) (6.7)

dm∗

dr∗
= Or2∗p

n
1+n
∗ α

3−n
2(1+n)
e α

1/2
N (1 + A), (6.8)

where
A =

[
4

5
R +

17− 3n

10(1 + n)
(1 + S)

]
∆α

α
(6.9)

where we notice that z = (1+n)A. Finally, for the first of the relativistic
corrections in the TOV equation, we have

1 +
p

ϵ
−→ 1 +

Op
n

1+n
∗

α
3−n

2(1+n)
e α

1/2
N

(1− A). (6.10)

It is important to note that now the perturbation terms (eq.6.5, 6.9) are
not only dependent on the GUT model and α variation - there is an
additional dependency on the polytropic index.

2. Numerical EoS

Apart from standard analytical equations which describe the interior of
a compact object, there are more accurate EoS in the form of numerical
tables. These offer more versatility since they don’t assume the same
behavior of matter in different depths from the surface of the star. Given
that the pressure gradient in a neutron star is significant, we should
account for phase transitions as well as relativistic or hyper-relativistic
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Quantity Value
nS saturation density in symmetric matter 0.159 fm−3

E0 binding energy per baryon in saturation 515.97 MeV
K incompressibility 230 MeV
K’ skewness −363.11 MeV
J symmetry energy 32.04 MeV
L symmetry energy slope parameter 46.00 MeV

Ksym symmetry incompressibility −119.73 MeV

6.1: Nuclear matter properties for the SLY4 EoS [15, 16, 17]

Quantity Value
Mmax maximum mass 2.075 Msun

RMmax radius at maximum NS mass 10.09 km
R1.4 radius at 1.4Msun NS mass 11.86 km

6.2: Neutron star properties for the SLY4 EoS [15, 16, 17]

phenomena near the center of the star. This can be accomplished us-
ing numerical EoS. Here we utilize the SLY4 model, acquired from the
CompOSE database [14]. SLY4 is a stiff EoS that assumes degenerate
matter comprised of nucleons and electrons. Nuclear as well as neutron
star properties for this model are shown in Tables 6.1, 6.2. Figure 6.1
represents the general behavior of the SLY4 EoS.

The main issue with numerical EoS in our analysis is that, so far, we
have only perturbed the model using analytical EoS expressions. More
specifically, eq. 6.7, 6.8 directly imply the use of a polytrope, or at least
some EoS parametrized as a polytrope. Consequently, we need to approx-
imate the numerical EoS in a way that will enable us to use it in the
perturbed TOV equations. We follow the methodology described below:

▶ First, we discretize the (p, ϵ) parametric space into equal steps.

▶ We fit a polytrope into every one of these steps and run tests with
discretization to recover the option that best fits the CompOSE data
for SLY4. Such tests are presented in Figure 6.2 where, as expected,
a smaller step produces a better fit.

▶ Now our numerical EoS (pressure and energy density data) is trans-
formed into a (ni, Ki) table, where ni, Ki are the polytropic index
and polytropic coefficient for step i respectively. As a result, we
have approximated our EoS using polytopic parameters, which can
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6.1: The SLY4 EoS, produced using the CompOSE software. The first
datapoint (p, ϵ) = (2.14325×10−8MeV, 9.30754×10−5MeV ) is not pictured,
to allow for a better representation of the general behavior of this EoS.
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6.2: Discretization tests for approximating the behavior of the SLY4 EoS.
It is obvious from the plots above that a smaller stepsize improves the
approximation and thus produces a more accurate result.

be used to solve the TOV equations. It is important to note that
the (ni, Ki) are merely phenomenological parameters, that is they
don’t hold any physical meaning about the properties of matter. As
a result, n values outside the relativistic and non-relativistic limits
are allowed.

▶ Previously, we utilized built-in Python solvers for the TOV problem.
But now, since the polytrope changes for each step, as we move
from the center of the star outwards, we require an algorithm that
allows for the manipulation of parameter values with every step. As
a result, we create an algorithm from scratch based on the 4th-order
Runge-Kutta method (see Appendix B).

Through the steps described above, we have managed to extend our anal-
ysis on neutron stars with numerical EoS. In the next Chapter, we in-
vestigate GUT models in this context.
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6.3: Mass-Radius relation of a cold symmetric neutron star with a SLY4
EoS, acquired from the CompOSE database website [14]. Horizontal lines
with pink and yellow error bars represent pulsar measurements.
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7

Neutron Stars II: Results

We follow the same procedure as in the white dwarf model in Chapter 5,
investigating 3 different GUT cases. We use the previous methodology to
produce results for the SLY4 EoS, assuming only positive and negative
perturbations of the order of 10−3. As a consistency check, we can com-
pare the unperturbed black lines from Figures 7.1, 7.2, 7.3 to Figure 6.3,
which depicts the Mass-Radius relation for the SLY4 EoS. We observe an
almost perfect alignment. Attempts of plotting similar figures using the
TOVsolver code [18], again without perturbations, yielded Mass-Radius
relations that differed significantly from the original Figure 6.3.

In Figure 7.1 we observe results for the Unification case (R,S) = (36, 160).
It is demonstrated again that negative perturbations raise the mass and
radius of the star, whereas positive variations have the opposite effect.
It is reasonable to recover similar results to the polytropic white dwarf
since neutron stars rely on the gravity-degeneracy pressure equilibrium
for stability. Consequently, the GUT model and α variation will affect
the QCD scale and neutron degeneracy pressure respectively, leading to
a shift in the equilibrium and the Mass-Radius relation. Figures 7.2, 7.3
depict the Dilaton (R,S) = (109.4, 0) and UV-Cutoff (R,S) = (−183, 22.5)
models, where we observe more exaggerated shifts from the unperturbed
case for the same reasons described in Chapter 5. Also in Figure 7.3,
the behaviors of positive and negative α variations are reversed due to
the negative R and relatively small S parameters in the GUT model. An-
other expected result is the asymmetry of the perturbed cases, which is
more visible in the last Figure but evident in all 3 due to the additional
perturbation in the first relativistic correction.
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7.1: Mass-Radius relation for the Unification model (R,S) = (36, 160).
Positive and negative variations of α are depicted in dark and light blue
respectively.

7.2: Mass-Radius relation for the Dilaton model (R,S) = (109.4, 0).
Positive and negative variations of α are depicted in dark and light blue
respectively.
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7.3: Mass-Radius relation for the UV-Cutoff model (R,S) = (−183, 22.5).
Positive and negative variations of α are depicted in dark and light blue
respectively.
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8

Conclusions

This thesis has been an attempt to clarify the efforts of theorists and
experimentalists in search of a great theory that adequately describes the
world, from the smallest scales to the largest. We focused on a par-
ticular group of models, Grand Unified Theories, which amongst other
physical consequences, predict the unification of electroweak and strong
interactions in a specific energy point, dependent on the (R,S) pair. We
selected 3 distinct examples in an attempt to cover a wide range of the
parametric space, in addition to including a variation of the fine struc-
ture constant α. To test these theories, we utilized degenerate objects
as probes, namely white dwarfs and neutron stars. Being stellar rem-
nants, these stars don’t depend on nuclear fusion to combat gravitational
collapse but instead rely on degeneracy pressure. They can be modeled
using the Tolman-Oppenheimer-Volkov (TOV) equations in addition to
an equation of state (EoS). Because GUT models affect the dynamics of
a degenerate star, we modeled their effects as perturbations to the TOV
equations.

Beginning our analysis with white dwarfs, we followed a methodology
that includes Taylor expanding the TOV equations and using a polytope
as the EoS. We compared our results for the 3 example GUT models
and also for symmetric variations of α. We found that positive pertur-
bations tend to reduce the mass of a star, both in the relativistic and
non-relativistic limits. In addition, we observed an asymmetry between
positive and negative variations in the relativistic star, which occurs due
to the additional perturbation in a relativistic correction on the TOV
equations. By comparing our results with a measurement of the most

38



massive white dwarf detected so far, we determined that a Dilaton model
with a negative variation at the 10−3 level is an unlikely scenario. A more
detailed analysis of the Chandrasekhar mass indicated that there is an
upper limit on the absolute value of the fine structure constant variation.
Future comparison with atomic clock data could provide further insight
into this limit.

For the neutron star case, we interpolated and extrapolated between the
previously derived Mass-Radius relations to recover a more general for-
mula, where the perturbation depended on the EoS. Since we utilized a
numerical EoS for this model, we had to parameterize it using the poly-
tropic index and coefficient, to allow it to be used along the perturbed
equations. The polytropic parameters of the EoS change as we move
from the center of the star outwards, so for that reason, we created a
solver that accounts for such changes. The results acquired from this
analysis were almost identical to the white dwarf model, indicating that
our methodology is consistent.

Nevertheless, many aspects of this work require improvement and fur-
ther expansion. Firstly, the solver for the neutron star model with the
numerical EoS needs to be rewritten in a more compact and simplified
form, to reduce running times and enhance readability by other users.
Also, thus far we have only investigated 3 very different GUT models,
which hardly provide us with an intuition about the rest of the (R,S)
parametric space. So, to perform a more comprehensive analysis we have
to scan a bigger part of the parametric space. In addition, we can com-
pare our results with reality, by utilizing α variation measurements or
Mass-Radius measurements from neutron stars. This has already been
achieved in [9] but taking into account recent advances in neutron star
detection and measurements, we can build upon this work by utilizing
this new data. Combining the theoretical model with measurements will
enable us to constrain the entire GUT parametric space with the use of
statistical methods.
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A

White Dwarf Code

1 import numpy as np
2 import matplotlib.pyplot as plt
3 from scipy.integrate import solve_ivp
4
5 MeV2kg=1.78266269594644e-30
6 Msun=1.9891e30 #kg
7 kg2Msun=1/Msun
8 m2km=1e3
9 km2m=1e-3
10 Pa2dyne_cm2=10
11
12 pi=np.pi
13 G=6.6743e-11 # kg^(-1)*m^3*s^(-2)
14 c=3.0e8 #m*s^(-1)
15 Ro=G*Msun/c**2 # m
16 h=6.62607015e-34 # kg*m^2*s^(-1)
17 h_=h/(2*pi)
18 me=0.51099895000*MeV2kg # kg
19 A_Z=2
20 e0=me**4*c**5/(pi**2*h_**3) # kg*m^(-1)*s^(-2) => Pa
21 mp=938.27208816*MeV2kg # kg
22 mn=939.5654205*MeV2kg # kg
23 mN=(mp+mn)/2 # kg
24 N=1000
25
26 #ALL CONSTANTS ARE IN SI (Kg,J,s,m,Pa)
27
28 ####################
29 #NEWTONS EQUATIONS (as is)
30 def linear_system_Newton(r,p_m):
31 p,m=p_m #everything in SI
32 g=5./3.
33 K=h_**2./(15.*pi**2.*me)*(3.*pi**2./(mN*c**2.*A_Z))**(5./3.)
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34 e=(p/K)**(1/g)
35 dp_dr=-G*e*m/(c**2*r**2)
36 dm_dr=4*pi*r**2*e/c**2
37 # print([dp_dr,dm_dr,r,K])
38 return [dp_dr,dm_dr]
39
40 r=np.linspace(1e-6,11.45e6,N)
41 sol = solve_ivp(linear_system_Newton ,(1e-10,11.45e6) ,[2.33002e21

,0],method='RK45',t_eval=r,rtol=1e-6,atol=1e-10)
42 pr,ma=sol.y
43
44 fig, ax1 = plt.subplots()
45
46 color = 'tab:blue'
47 ax1.set_xlabel('r (m)')
48 ax1.set_ylabel('Pressure (dyne/cm^2)', color=color)
49 ax1.plot(r, pr*Pa2dyne_cm2 , color=color, label='Pressure')
50 ax1.tick_params(axis='y', labelcolor=color)
51
52 # Creating a twin Axes for the mass on the right y-axis
53 ax2 = ax1.twinx()
54 color = 'tab:red'
55 ax2.set_ylabel('Mass (Mo)', color=color)
56 ax2.plot(r, ma/Msun, color=color, label='Mass')
57 ax2.tick_params(axis='y', labelcolor=color)
58 plt.show()
59
60
61 ####################
62 # TOV EQUATIONS (as is)
63 def linear_system_TOV(r,p_m,g):
64 p,m=p_m #everything in SI
65 if g==5/3:
66 K=h_**2./(15.*pi**2.*me)*(3.*pi**2./(mN*c**2.*A_Z))

**(5./3.)
67 elif g==4/3:
68 K=h_*c/(12.*pi**2.)*(3.*pi**2./(mN*c**2.*A_Z))**(4./3.)
69 else:
70 raise ValueError("Unsupported value of g")
71 e=(p/K)**(1/g)
72 p_e=K*e**(g-1)
73 dp_dr=-G*e*m/(c**2*r**2) * (1+p_e) * (1+4*pi*r**3*p/(m*c**2))

* \
74 (1-2*G*m/(c**2*r))**(-1)
75 dm_dr=4*pi*r**2*e/c**2
76 # print([dp_dr,dm_dr,r]
77 return [dp_dr,dm_dr]
78 R=110
79 S=0
80 da_a=0.001
81 g=5/3
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82 if g==4/3: #relativistic
83 initial_p=5.62e24
84 rstart=1e-2
85 rend=5.2e6
86 gtxt='4/3'
87 elif g==5/3: #nonrelativistic
88 initial_p=2.33002e21
89 rstart=1e-6
90 rend=11e6
91 gtxt='5/3'
92 else:
93 raise ValueError("Unsupported value of g")
94 r=np.linspace(rstart,rend,N)
95 sol=solve_ivp(linear_system_TOV ,(rstart,rend),[initial_p ,1e-10],

method='RK45',t_eval=r,rtol=1e-6,atol=1e-10,args=(g,))
96 pr,ma=sol.y
97
98 fig, ax1 = plt.subplots()
99
100 color = 'tab:blue'
101 ax1.set_xlabel('r (km)')
102 ax1.set_ylabel('Pressure (dyne/cm^2)', color=color)
103 ax1.plot(r*1e-3, pr*Pa2dyne_cm2 , color=color, label='Pressure')
104 ax1.tick_params(axis='y', labelcolor=color)
105
106 # Creating a twin Axes for the mass on the right y-axis
107 ax2=ax1.twinx()
108 color='tab:red'
109 ax2.set_ylabel('Mass (Mo)',color=color)
110 ax2.plot(r*1e-3,ma/Msun,color=color,label='Mass')
111 ax2.tick_params(axis='y',labelcolor=color)
112 plt.show()
113
114
115 ####################
116 # NEWTON'S EQUATIONS (as is + with varying couplings)
117 N=1000
118 def K(n):
119 if n==3:
120 return h_*c/(12.*pi**2.)*(3.*pi**2./(mN*c**2.*A_Z))

**(4./3.)
121 elif n==3/2:
122 return h_**2./(15.*pi**2.*me)*(3.*pi**2./(mN*c**2.*A_Z))

**(5./3.)
123 p0_r=np.linspace(1e23,1e26,N) #central pressures
124 p0_n=np.linspace(1e20,4.5e21,N)
125 M=np.linspace(0.1*Msun,2*Msun,N) #for Mass - Radius relation
126 dencrit=mn*me**3*A_Z*c**3/(3*pi**2*h_**3)
127 ksi1_r=6.89685
128 ksi1_n=3.65375
129 ksi1_theta_r=2.01824
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130 ksi1_theta_n=2.71406
131 Rad_r=np.zeros([N,2])
132 Rad_n=np.zeros([N,2])
133 M_r=np.zeros([N,2])
134 M_n=np.zeros([N,2])
135 RM=np.zeros([N,2]) # non relativistic only - there is no such

relativistic relation
136 da_a=0.001
137 R=110
138 S=0
139 # def A(n):
140 # return (n+1)**n/(4*pi)*ksi1_r**(3-n)*ksi1_theta_r**(1/(n-1))
141 x=(0.8*R+0.2*(1+S))*da_a
142 y=2*(0.8*R+0.2*(1+S))*da_a
143
144 Mlimit=np.zeros(2)
145
146 for i in range(N):
147 n=3 #RELATIVISTIC CASE
148 den0=K(n)**(-3/4)*c**(-2)*p0_r**(3/4) #central densities (

polytrope)
149 Rad_r[i,0]=1/2*(3*pi)**(1/2)*ksi1_r*(h_**(3/2)/(c**(1/2)*G

**(1/2)*me*mN*A_Z))*(dencrit/den0[i])**(1/3)
150 Rad_r[i,1]=Rad_r[i,0] * (1-y)
151 M_r[i,0]=1/2*(3*pi)**(1/2)*ksi1_theta_r*(h_*c/G)**(3/2)*(mN*

A_Z)**(-2)
152 M_r[i,1]=M_r[i,0] * (1-y)
153 Mlimit[0]=M_r[0,0]/Msun
154 Mlimit[1]=M_r[0,1]/Msun
155 Mdiff=abs(Mlimit[0]-Mlimit[1])
156
157 n=3/2 #NON RELATIVISTIC CASE
158 den0=K(n)**(-3/5)*c**(-2)*p0_n**(3/5)
159 Rad_n[i,0]=((n+1)*K(n)*den0[i]**((1-n)/n)/(4*pi*G))**(1/2)*c

**((n+1)/n)*ksi1_n
160 Rad_n[i,1]=Rad_n[i,0] * (1-x)
161 M_n[i,0]=4*pi*c**((3*n+3)/n)*((n+1)*K(n)/(4*pi*G))**(3/2)*den0

[i]**((3-n)/(2*n))*ksi1_theta_n
162 M_n[i,1]=M_n[i,0] * (1-x)
163
164 Q=4*pi*c**((2*n+2)/(n-1))*((n+1)*K(n)/(4*pi*G))**(n/(n-1))*

ksi1_n**((n-3)/(1-n))*ksi1_theta_n
165 RM[i,0]=(M[i]/Q)**((1-n)/(3-n))
166 RM[i,1]=RM[i,0] * (1-x)
167
168
169 #RELATIVISTIC CASE
170 fig, ax1 = plt.subplots()
171 plt.title('Relativistic White Dwarf')
172 color = 'tab:red'
173 ax1.set_xlabel('Central pressure (dyne/cm^2)')
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174 plt.xscale('log')
175
176 ax1.set_ylabel('R (km)', color=color)
177 ax1.plot(p0_r*Pa2dyne_cm2 ,Rad_r[:,0]*1e-3,color=color, label='

Radius')
178 ax1.tick_params(axis='y', labelcolor=color)
179 # ax1.set_ylim(bottom=2000, top=16000)
180
181 # Creating a twin Axes for the mass on the right y-axis
182 ax2=ax1.twinx()
183 color = 'tab:blue'
184 ax2.set_ylabel('Perturbed R (km)', color=color)
185 ax2.plot(p0_r*Pa2dyne_cm2 ,Rad_r[:,1]*1e-3,color=color, label='

Radius with Couplings')
186 ax2.tick_params(axis='y', labelcolor=color)
187 # ax2.set_ylim(bottom=2000, top=16000)
188 plt.show()
189
190
191 fig, ax1 = plt.subplots()
192 plt.title('Relativistic White Dwarf')
193 color='tab:red'
194 ax1.set_xlabel('Central pressure (dyne/cm^2)')
195 plt.xscale('log')
196
197 ax1.set_ylabel('M (Mo)',color=color)
198 ax1.plot(p0_r*Pa2dyne_cm2 ,M_r[:,0]/Msun,color=color,label='Mass')
199 ax1.tick_params(axis='y',labelcolor=color)
200 # ax1.set_ylim(bottom=1.17, top=1.45)
201
202 #Creating a twin Axes for the mass on the right y-axis
203 ax2=ax1.twinx()
204 color='tab:blue'
205 ax2.set_ylabel('Perturbed M (Solar Masses)',color=color)
206 ax2.plot(p0_r*Pa2dyne_cm2 ,M_r[:,1]/Msun,color=color,label='Mass

with Couplings')
207 ax2.tick_params(axis='y',labelcolor=color)
208 # ax2.set_ylim(bottom=1.17, top=1.45)
209 plt.show()
210
211
212 ####################
213 #NON RELATIVISTIC CASE
214 fig, ax1 = plt.subplots()
215 plt.title('Non Relativistic White Dwarf')
216 color = 'tab:red'
217 ax1.set_xlabel('Central pressure (dyne/cm^2)')
218 # plt.xscale('log')
219
220 ax1.set_ylabel('R (km)', color=color)
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221 ax1.plot(p0_n*Pa2dyne_cm2 ,Rad_n[:,0]*1e-3,color=color, label='
Radius')

222 ax1.tick_params(axis='y', labelcolor=color)
223 # ax1.set_ylim(bottom=9000, top=16000)
224
225 # Creating a twin Axes for the mass on the right y-axis
226 ax2=ax1.twinx()
227 color = 'tab:blue'
228 ax2.set_ylabel('Perturbed R (km)', color=color)
229 ax2.plot(p0_n*Pa2dyne_cm2 ,Rad_n[:,1]*1e-3,color=color, label='

Radius with Couplings')
230 ax2.tick_params(axis='y', labelcolor=color)
231 # ax2.set_ylim(bottom=9000, top=16000)
232 plt.show()
233
234
235 fig, ax1 = plt.subplots()
236 plt.title('Non Relativistic White Dwarf')
237 color='tab:red'
238 ax1.set_xlabel('Central pressure (dyne/cm^2)')
239 # plt.xscale('log')
240
241 ax1.set_ylabel('M (Solar Masses)',color=color)
242 ax1.plot(p0_n*Pa2dyne_cm2 ,M_n[:,0]/Msun,color=color,label='Mass')
243 ax1.tick_params(axis='y',labelcolor=color)
244 # ax1.set_ylim(bottom=0.15,top=0.55)
245
246
247 #Creating a twin Axes for the mass on the right y-axis
248 ax2=ax1.twinx()
249 color='tab:blue'
250 ax2.set_ylabel('Perturbed M (Solar Masses)',color=color)
251 ax2.plot(p0_n*Pa2dyne_cm2 ,M_n[:,1]/Msun,color=color,label='Mass

with Couplings')
252 ax2.tick_params(axis='y',labelcolor=color)
253 # ax2.set_ylim(bottom=0.15,top=0.55)
254 plt.show()
255
256 ####################
257 # MASS RADIUS RELATION
258 maxR=max([max(RM[:,0]), max(RM[:,1])])
259 minR=min([min(RM[:,0]), min(RM[:,1])])
260 fig, ax1 = plt.subplots()
261 plt.title('Non Relativistic White Dwarf')
262 color = 'tab:red'
263 ax1.set_xlabel('M (Solar Masses)')
264 # plt.xscale('log')
265
266 ax1.set_ylabel('R (km)', color=color)
267 ax1.plot(M/Msun,RM[:, 0]*1e-3,color=color, label='Radius')
268 ax1.tick_params(axis='y', labelcolor=color)
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269 ax1.set_ylim(bottom=minR*1e-3, top=maxR*1e-3)
270
271 # Creating a twin Axes for the mass on the right y-axis
272 ax2=ax1.twinx()
273 color = 'tab:blue'
274 ax2.set_ylabel('Perturbed R (km)', color=color)
275 ax2.plot(M/Msun,RM[:, 1]*1e-3,color=color, label='Radius with

Couplings')
276 ax2.tick_params(axis='y', labelcolor=color)
277 ax2.set_ylim(bottom=minR*1e-3, top=maxR*1e-3)
278 plt.show()
279
280 ####################
281 # TOV WITH COUPLINGS
282 R=110 # change these parameters in the begining of the script (TOV

function)
283 S=0
284 da_a=0.001
285 Mlimit=np.zeros([2]) # Chandrasekhar limit for both cases
286 def TOV_couplings(r,p_m,g):
287 p,m=p_m #everything in SI
288 if g==5/3:
289 K=h_**2./(15.*pi**2.*me)*(3.*pi**2./(mN*c**2.*A_Z))

**(5./3.)
290 x=(0.8*R+0.5*(1+S))*da_a
291 elif g==4/3:
292 K=h_*c/(12.*pi**2.)*(3.*pi**2./(mN*c**2.*A_Z))**(4./3.)
293 x=(0.8*R+0.2*(1+S))*da_a
294 e=(p/K)**(1/g)
295 p_e=K*e**(g-1)
296 dp_dr=-G*e*m/(c**2*r**2) * (1+p_e) * (1+4*pi*r**3*p/(m*c**2))

* \
297 (1-2*G*m/(c**2*r))**(-1)
298 dm_dr=4*pi*r**2*e/c**2
299 dp_dr_a=dp_dr*(1-x**2)
300 dm_dr_a=dm_dr*(1+x)
301 # print([dp_dr,dm_dr,r])
302 return [dp_dr_a,dm_dr_a]
303 sol=solve_ivp(TOV_couplings ,(rstart,rend),[initial_p ,1e-10],method

='RK45',t_eval=r,rtol=1e-6,atol=1e-10,args=(g,))
304 pr_a,ma_a=sol.y
305 Mlimit[0]=max(ma)/Msun
306 Mlimit[1]=max(ma_a)/Msun
307 Mdiff=abs(Mlimit[0]-Mlimit[1])
308 mlimit=max([max(ma),max(ma_a)])
309
310 fig, ax1 = plt.subplots()
311
312 color = 'tab:blue'
313 ax1.set_xlabel('r (km)')
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314 plt.title(f'R={R}, S={S}, $\\gamma$={gtxt}, $\\Delta\\alpha/\\
alpha$={da_a}')

315 ax1.set_ylabel('Pressure (dyne/cm^2)', color=color)
316 ax1.plot(r*1e-3, pr*Pa2dyne_cm2 , color=color, label='Pressure')
317 ax1.tick_params(axis='y', labelcolor=color)
318 ax1.set_ylim(bottom=0, top=initial_p*Pa2dyne_cm2+1e21)
319
320 # Creating a twin Axes for the mass on the right y-axis
321 ax2=ax1.twinx()
322 color='tab:red'
323 ax2.set_ylabel('Pressure perturbed (dyne/cm^2)',color=color)
324 ax2.plot(r*1e-3,pr_a*Pa2dyne_cm2 ,color=color,label='Pressure P')
325 ax2.tick_params(axis='y',labelcolor=color)
326 ax2.set_ylim(bottom=0, top=initial_p*Pa2dyne_cm2+1e21)
327 plt.show()
328
329 fig, ax1 = plt.subplots()
330
331 color = 'tab:blue'
332 ax1.set_xlabel('r (km)')
333 plt.title(f'R={R}, S={S}, $\\gamma$={gtxt}, $\\Delta\\alpha/\\

alpha$={da_a}')
334 ax1.set_ylabel('Mass (Mo)', color=color)
335 ax1.plot(r*1e-3,ma/Msun,color=color,label='Mass')
336 ax1.tick_params(axis='y', labelcolor=color)
337 ax1.set_ylim(bottom=0, top=mlimit/Msun+0.1)
338
339 # Creating a twin Axes for the mass on the right y-axis
340 ax2=ax1.twinx()
341 color='tab:red'
342 ax2.set_ylabel('Mass perturbed (Mo)',color=color)
343 ax2.plot(r*1e-3,ma_a/Msun,color=color,label='Mass P')
344 ax2.tick_params(axis='y',labelcolor=color)
345 ax2.set_ylim(bottom=0, top=mlimit/Msun+0.1)
346 plt.show()
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B

Neutron Star Code

1 # Assuming you have imported the TOV class earlier
2 # from tovsolver.tov import TOV
3
4 # Import necessary modules
5 import numpy as np
6 import matplotlib.pyplot as plt
7 from scipy.interpolate import interp1d
8
9 pi=np.pi
10 MeV_fm3_to_pa = 1.6021766e32
11 G = 6.6730831e-11 #SI
12 c = 2.99792458e8 #SI
13 Msolar=1.9891e30 #kg
14 # Load the EoS data from the file
15 eos = np.genfromtxt("SLY4.txt")
16
17 # Extract neutron number density and pressure arrays from EoS data
18 e_arr, p_arr = eos[:, 4]*MeV_fm3_to_pa , eos[:, 3]*MeV_fm3_to_pa #

Pa
19 plt.loglog(e_arr,p_arr,'.',markersize=1.5)
20 plt.xlabel("Energy density MeV")
21 plt.ylabel("Pressure MeV")
22
23
24
25 # # # Initialize TOV solver with neutron number density and

pressure arrays
26 # tov_s = TOV(e_arr, p_arr, plot_eos=True, add_crust=False)
27
28 # m_arr = []
29 # R_arr = []
30
31 # dens_c=np.logspace(-4, 3, 350)
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32 # # Adjust the range of central densities as needed
33 # for dens_c in np.logspace(-4, 3, 350):
34 # # Solve the TOV equations for the current central density
35 # R, M, prof = tov_s.solve(dens_c, rmax=10e5, dr=100)
36 # # Append the resulting mass and radius to the lists
37 # m_arr.append(M)
38 # R_arr.append(R)
39
40
41 # plt.plot(R_arr, m_arr)
42
43 # plt.xlim(10,20)
44 # plt.ylim(0,2.3)
45
46 # plt.ylabel(r'${\rm M/M_\odot}$')
47 # plt.xlabel(r'${\rm R~(km)}$')
48 #

####################################################################

49
50 ## TOV EQNS AND RK4 STEP
51 # def A(R,S,n,da_a): #Perturbation depending on the GUT model and

the EoS
52 # return (4/5*R+(17-3*n)/(10*(1+n))*(1+S))*da_a
53
54 def dp_dr(r, p, m, n, K, Rp, Sp, da_a):
55 e = ((p / K)**(n / (n + 1)))
56 p_e= K*e**((n+1)/n -1)
57 A=(4/5*Rp+(17-3*n)/(10*(1+(n))*(1+Sp)))*da_a
58 return -G*m*e/(c**2*r**2) * (1+p_e*(1-A)) * (1+4*pi*r**3*p

/(m*c**2)) * (1-2*G*m/(c**2*r))**(-1) * (1+A)
59
60 def dm_dr(r, p, n, K):
61 e = ((p / K)**(n / (n + 1)))
62 return 4 * pi * r**2 * e / c**2
63
64 def rk4_step(r, dr, p, m, K, n, Rp, Sp, da_a):
65 """
66 Perform one step of fourth-order Runge-Kutta method.
67 """
68 # print([p,n])
69 k1 = dr * dp_dr(r, p, m, n, K, Rp, Sp, da_a)
70 l1 = dr * dm_dr(r, p, n, K)
71 k2 = dr * dp_dr(r + 0.5 * dr, p + 0.5 * k1, m + 0.5 * l1, n, K

, Rp, Sp, da_a)
72 l2 = dr * dm_dr(r + 0.5 * dr, p + 0.5 * k1, n, K)
73 k3 = dr * dp_dr(r + 0.5 * dr, p + 0.5 * k2, m + 0.5 * l2, n, K

, Rp, Sp, da_a)
74 l3 = dr * dm_dr(r + 0.5 * dr, p + 0.5 * k2, n, K)
75 k4 = dr * dp_dr(r + dr, p + k3, m + l3, n, K, Rp, Sp, da_a)
76 l4 = dr * dm_dr(r + dr, p + k3, n, K)
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77 dp = (k1 + 2 * k2 + 2 * k3 + k4) / 6
78 dm = (l1 + 2 * l2 + 2 * l3 + l4) / 6
79
80 return dp, dm
81
82 def solve_tov(p_central , Keff, neff, Rp, Sp, da_a, rmax, rstart,

dr):
83 pr=[]
84 rad=[]
85 ma=[]
86 r = rstart # Starting radius in m
87 p = p_central #Starting pressure in m
88 m = 1e-2 # Starting mass at center in m
89 for _ in np.linspace(0,rmax,int(rmax/dr)): # only number of

iterations (not r values)
90 # if p>=p_arr[160]: # Pa
91 # K=7e-65 #6e-56 #7e-65
92 # n=0.6
93 # else:
94 # K=1.2e-12
95 # n=3.6
96 K=float(Keff(p))
97 n=float(neff(p))
98 # K=1.211485341708745e-13
99 # n=3
100 dp, dm = rk4_step(r, dr, p, m, K, n, Rp, Sp, da_a) # in Pa

and kg respectively
101
102 # if r>=10000 and r<=12000:
103 # print([p,dp,m,dm,r])
104
105 #Check for NaN values
106 if np.isnan(p):
107 # Handle NaN value (e.g., set a default value)
108 # print("NaN encountered in p. Terminating computation

.")
109 break
110 elif np.isnan(dp) or np.isnan(dm):
111 # Handle NaN values (e.g., set default values or

terminate)
112 # print("NaN encountered in dp or dm. Terminating

computation.")
113 break
114 elif r>=7000 and abs(dm/m)<=1e-6:
115 # print("Mass derivative 5 orders of magnitude smaller

than mass. Terminating computation.")
116 break
117 p += dp # Pa
118 m += dm # kg
119 r += dr # m
120 pr.append(p) # Pa
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121 ma.append(m) # kg
122 rad.append(r) # m
123
124 fig, ax1 = plt.subplots()
125 plt.title(f'Central p: {central_pressure} Pa')
126 color = 'tab:blue'
127 ax1.set_xlabel('r (m)')
128 ax1.set_ylabel('Pressure (Pa)', color=color)
129 ax1.plot(rad, pr, color=color, label='Pressure')
130 ax1.tick_params(axis='y', labelcolor=color)
131
132 # Creating a twin Axes for the mass on the right y-axis
133 ax2=ax1.twinx()
134 color='tab:red'
135 ax2.set_ylabel('Mass (kg)',color=color)
136 ax2.plot(rad,ma,color=color,label='Mass')
137 ax2.tick_params(axis='y',labelcolor=color)
138
139 return r, m
140
141 #

########################################################################################

142 # CREATE ARRAYS FOR neff AND Keff + APPLICATION
143 #
144 n=[2, 7, 14, 28] #datapoints per step
145 neff=np.zeros((4,196))
146 Keff=np.zeros((4,196))
147 e=np.zeros((4,196))
148 K_int=[None]*4
149 n_int=[None]*4
150 for m in range(0,4):
151 for i in range(0,195,n[m]):
152 a = np.polyfit(np.log10(e_arr[i:i+n[m]]),np.log10(p_arr[i:

i+n[m]]), 1)
153 ne=1/(a[0]-1) #doesn't change with unit conversion (its a

slope)
154 K=10**a[1] #in SI
155 for j in range(0,n[m]):
156 neff[m,i+j]=ne
157 Keff[m,i+j]=K
158 for i in range(0,196):
159 e[m,i]=(p_arr[i]/Keff[m,i])**(neff[m,i]/(neff[m,i]+1))
160 K_int[m] = interp1d(p_arr, Keff[m,:], kind='linear',

bounds_error=False, fill_value='extrapolate')
161 n_int[m] = interp1d(p_arr, neff[m,:], kind='linear',

bounds_error=False, fill_value='extrapolate')
162 fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(8, 6))
163 for i in range(0,4):
164 row = i // 2
165 col = i % 2
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166 axes[row,col].loglog(e_arr,p_arr,'k.',markersize=1.1) #SI
167 axes[row,col].loglog(e[i,:],p_arr,color=(3/255, 86/255,

115/255, 0.9))
168 axes[row,col].text(e[i, :].mean()/1e3, p_arr.mean(), f"{n[i]}

points per step", horizontalalignment='center')
169 axes[1,0].set_ylabel("Pressure (Pa)")
170 axes[1,0].set_xlabel("Energy Density (Pa)")
171 K_int=K_int[0]
172 n_int=n_int[0]
173
174 # #FOR A POLYTROPE
175 # MeV2kg=1.78266269594644e-30
176 # A_Z=2
177 # mp=938.27208816*MeV2kg # kg
178 # mn=939.5654205*MeV2kg # kg
179 # mN=(mp+mn)/2 # kg
180 # h=6.62607015e-34 # kg*m^2*s^(-1)
181 # h_=h/(2*pi)
182 # c=3.0e8 #m*s^(-1)
183 # K_int=[]
184 # n_int=[]
185 # for i in range(0,195):
186 # K_int.append(h_*c/(12.*pi**2.)*(3.*pi**2./(mN*c**2.*A_Z))

**(4./3.))
187 # n_int.append(3)
188
189 #Example usage
190 N=1000
191 da_a=[1e-3, -1e-3]
192 S=[160, 0, 22.5]
193 R=[36, 109.4, -183]
194 Radius = np.zeros(N)
195 Mass = np.zeros(N)
196 Radius1 = np.zeros((2,N))
197 Mass1 = np.zeros((2,N))
198 Radius2 = np.zeros((2,N))
199 Mass2 = np.zeros((2,N))
200 Radius3 = np.zeros((2,N))
201 Mass3 = np.zeros((2,N))
202
203 central_pressures=np.linspace(p_arr[1],p_arr[195],N)
204 for m in range(1,4): #K_int, n_int for 4 discretizations
205 for j in range(0,N-1): #Mass-radius datapoints
206 central_pressure=central_pressures[j]
207 rmax=30e4 #m
208 rstart=1e-2 #m
209 dr=1 #m
210 for i in range(2): #da_a cases
211 radius, mass = solve_tov(central_pressure , K_int[m],

n_int[m], 0, 0, 0, rmax, rstart, dr) # in m and kg
respectively
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212 Radius[j]=radius*1e-3 # km
213 Mass[j]=mass/Msolar # Msolar
214 radius, mass = solve_tov(central_pressure , K_int[m],

n_int[m], R[0], S[0], da_a[i], rmax, rstart, dr) # in m and kg
respectively

215 Radius1[i,j]=radius*1e-3 # km
216 Mass1[i,j]=mass/Msolar # Msolar
217 radius, mass = solve_tov(central_pressure , K_int[m],

n_int[m], R[1], S[1], da_a[i], rmax, rstart, dr) # in m and kg
respectively

218 Radius2[i,j]=radius*1e-3 # km
219 Mass2[i,j]=mass/Msolar # Msolar
220 radius, mass = solve_tov(central_pressure , K_int[m],

n_int[m], R[2], S[2], da_a[i], rmax, rstart, dr) # in m and kg
respectively

221 Radius3[i,j]=radius*1e-3 # km
222 Mass3[i,j]=mass/Msolar # Msolar
223 # print("Central Pressure:", central_pressure , 'Pa')
224 # print("Radius:", radius, 'm')
225 # print("Mass:", mass/Msolar, "Msun")
226
227 color = [(3/255, 86/255, 115/255, 0.9), (3/255, 86/255, 115/255,

0.5)]
228 p=[r"10^{-3}", r"-10^{-3}"]
229 plt.figure()
230 plt.plot(Radius[1:9999],Mass[1:9999],'k', label=r"$d\alpha/\alpha

=0$") # km and Msolar respectively
231 for i in range(2):
232 plt.plot(Radius1[i,1:9999],Mass1[i,1:9999], color=color[i],

label=r"$d\alpha/\alpha="+p[i]+"$") # km and Msolar
respectively

233 plt.ylabel("Mass (Msolar)")
234 plt.xlabel("Radius (km)")
235 # plt.title("Unification")
236 plt.legend()
237 # plt.ylim([0, 1.4])
238 # plt.xlim([0, 15])
239
240 plt.figure()
241 plt.plot(Radius[1:9999],Mass[1:9999],'k', label=r"$d\alpha/\alpha

=0$") # km and Msolar respectively
242 for i in range(2):
243 plt.plot(Radius2[i,1:9999],Mass2[i,1:9999], color=color[i],

label=r"$d\alpha/\alpha="+p[i]+"$") # km and Msolar
respectively

244 plt.ylabel("Mass (Msolar)")
245 plt.xlabel("Radius (km)")
246 # plt.title("Dilaton")
247 plt.legend()
248 # # plt.ylim([0, 1.4])
249 # # plt.xlim([0, 15])
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250
251 plt.figure()
252 plt.plot(Radius[1:9999],Mass[1:9999],'k', label=r"$d\alpha/\alpha

=0$") # km and Msolar respectively
253 for i in range(2):
254 plt.plot(Radius3[i,1:9999],Mass3[i,1:9999], color=color[i],

label=r"$d\alpha/\alpha="+p[i]+"$") # km and Msolar
respectively

255 plt.ylabel("Mass (Msolar)")
256 plt.xlabel("Radius (km)")
257 # plt.title("UV cutoff")
258 # plt.legend()
259 # # plt.ylim([0, 1.4])
260 # # plt.xlim([0, 15])
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