Speaker
Description
In addition to the now-well known “Hubble tension”, in recent years a second tension has emerged: the $S_8$ tension. This is a measure of the homogeneity of the Universe. Specifically, $S_8$ is defined as $(\Omega_{\mathrm matter}/0.3)^{0.5} \sigma_8$ where $\sigma_8$ is the standard deviation of the density fluctuation in an 8 $h^{-1}$ Mpc radius sphere. As with the Hubble tension, there is disagreement, at greater than 4 $\sigma$ significance between what is predicted by extrapolating the fluctuations in the Cosmic Microwave Background forward to the present day, and what is measured by multiple probes of the inhomogeneity in the nearby Universe. I will discuss the diverse lines of evidence for the tension, showing it is not restricted to one probe, but is seen in weak gravitational lensing, peculiar velocities and redshift-space distortions and cluster abundances. I will conclude by discussing prospects for future measurements.
External references
- 23050129
- 7461fa9a-b4eb-4429-96c5-f17aee626574
- c5b68821-388e-45b8-8ea7-7bab3d47cb12