

2023/06/27

Underground Science

Jodi Cooley

Executive Director I SNOLAB Professor of Physics I Queen's University Adjunct Research Professor I SMU

World Class Science is Done in Underground Laboratories

- Dark Matter
- Neutrino Physics
- Double Beta Decay
- Nuclear Astrophysics
- Quantum Technology
- Rare Processes
- Geophysics
- Gravitational Waves
- General Relativity
- Underground Biology
- Nuclear Security

•

of Classical WINPs

arXiv: 2110.02359

Dark Matter Direct Detection

Abundance of Evidence for particle Dark Matter

- ► The Missing Mass Problem:
 - > Dynamics of stars, galaxies, and clusters
 - ► Rotation curves, gravitational lensing
 - Large Scale Structure formation
- ► Wealth of evidence for a particle solution
 - Microlensing (MACHOs) mostly ruled out
 - ► MOND has problems with Bullet Cluster
- ► Non-baryonic
 - > Height of acoustic peaks in the CMB (Ω_b , Ω_m)
 - > Power spectrum of density fluctuations (Ω_m)
 - ► Primordial Nucleosynthesis (Ω_b)
- ► And STILL HERE!

- ► Stable, neutral, non-relativistic
- ► Interacts via gravity and (maybe) a weak force

Cosmic Microwave Background

Numerium as-15-sinulation us

Supernovae Ia

Dark Energy 68.3%

- ► How to Design a Dark Matter Detector
 - ► Expected rates
 - Background considerations
 - Experimental signatures
- Direct Detection Searches
 - ► Have we already seen a signal?
 - Detecting scattering from the nucleus with existing experiments
 - Reaching lower masses by detecting single electron-hole pairs with current experiments
 - ► Ideas for extending sensitivity to sub-eV dark matter signatures.

Considerations - Detecting Dark Matter Via Nuclear Scattering

Direct Detection Event Rates

Assume that the dark matter is not only gravitationally interacting (WIMP).

Elastic scatter of a2WIMP off a nucleus ► In F_{T} = $\frac{m}{m_T}$ = Can occur via spin-dependent or spin-independent channels

.

Need to distinguish this event from the overwhelming number of background events.

$$\sqrt{\frac{m_T E_{th}}{2\mu^2}}$$

Kinematics

Calculate the recoil energy of a nucleus in the center of mass frame.

initial momentum: $\vec{p} = -\vec{E}_{k}$ *final momentum:* $\vec{p}' = -\vec{E}_{k}' = \vec{q} + \mu \vec{v}_{\chi}$

where

WIMP-nucleus reduced mass: $\mu = \frac{m_{\chi}m_N}{m_{\chi} + m_N}$ q = momentum transfer

For elastic scattering in the COM fram

$$\frac{q^2}{2} = \frac{1}{2}(\vec{p} - \vec{p}')^2 = p^2 - \vec{p} \cdot \vec{p}' = p^2(1 - p^2)^2$$

► The NR energy can then be calculated as

$$E_r = \frac{|\vec{q}|^2}{2m_N} = \frac{\mu^2 v^2}{m_N} (1)$$

le:
$$|\vec{p}| = |\vec{p'}|$$

 $-\cos\theta$

v = mean WIMP-velocityrelative to the target

 $-\cos\theta_R$)

Kinematics

$$E_{R} = \frac{\mu^{2} v^{2}}{m_{N}} (1 - (-1)) \implies v_{min} = \sqrt{\frac{m_{N} E_{R}}{2\mu^{2}}} = \frac{q}{2\mu}$$

► Implications:

> Lighter dark matter particles ($m_{\gamma} \ll m_N$) must have larger threshold velocities.

Inelastic scattering can further increase the minimal velocity needed. Consider the average momentum transfer in an elastic scattering between a WIMPnucleus. Consider the case of a 10 GeV $p = m_{\gamma}v = (10 \times 10^8 \ eV \ c^{-2})(100 \times 10^3 \ m)$

If the DM were 100 GeV/ c^2 then our momentum transfer would be ~ 30 MeV/c

$$E_R = \frac{\mu^2 v^2}{m_N} (1 - c)$$
$$E_r = \frac{|\vec{q}|^2}{2m_N}$$

$$(c^2 \text{ WIMP whose speed is } \sim 100 \text{ km s}^{-1})$$

 $\frac{c}{3 \times 10^8 \text{ m s}^{-1}} \sim 3 \text{ MeV/c}$

► What is the de Broglie wavelength that corresponds to a momentum transfer of ~10 MeV/c?

$$\lambda = \frac{hc}{pc} = \frac{1.239 \times 10^{-6} \text{ eV} \cdot m}{10 \times 10^6 \text{ eV}}$$

 $\sim 12 \ pm > R_0 A^{1/3} \ fm$

This is larger than the size of most nuclei. Thus, scattering amplitudes on individual nucleons will add coherently.

Expected Rates in a Detector - Simplified.

The differential event rate for simplified WIMP interaction (a detector stationary in the galaxy) is given by:

dR

 E_{R}

► The total event rate is given by

 $\int^{\infty} \frac{dR}{dE_R} dE_R = R_0$

and the mean recoiling energy

$$\langle E_R \rangle = \int_0^\infty E_R \frac{dR}{dE_R} dE_R = E_0 r$$

Example: Calculate the Mean NR Deposited in a Detector

> Assume that the DM mass and the nucleus mass are identical:

$$m_{\chi} = m_N = 100 \ GeV/c^2$$

► Our formula is

$$< E_R > = E_0 r = \left(\frac{1}{2}m_{\chi}v^2\right) \left(\frac{4m_{\chi}m_N}{(m_{\chi} + m_N)^2}\right)$$

- $v \approx 220 \text{ km s}^{-1} = 0.75 \times 10^{-3} \text{ c}$
- > Substituting into our equation for $\langle E_R \rangle$

 $< E_R > = \frac{100 \ GeV c^{-2} (0.75 \times 10^{-3} \ c)^2}{2} \sim 30 \ keV$

> Assuming the halo is stationary, the mean WIMP velocity relative to the target is

Expected Detector Rates: The Details

- ► We need to take into account the following
 - > DM will have a certain velocity distribution f(v).
 - The detector is on Earth, Earth moves around the Sun, and the Sun moves around the Galactic Center.
 - The cross-section depends upon the spin interaction. In the simplest cases, this is either spinindependent (SI) or spin-dependent (SD)
 - DM scatters on nuclei. Nuclei have finite size. As such, we have to consider form-factor corrections which are different for SI and SD interactions.
 - The recoil energy is not necessarily the observed energy. The detection efficiency in real life is not 100%.
 - Detectors have certain energy resolution and energy thresholds.

Dark Matter Detection Master Formula

 \blacktriangleright The total number of particles detected (N) is the dark matter flux times the effective area of the target multiplied by the observation time (t)

$$N = tnvN_T\sigma$$

DM number density x DM speed

 \blacktriangleright We will need to determine the spectrum of DM recoils \rightarrow the energy dependence of the number of detected DM particles

$$\frac{dN}{dE_R} = tnvN_T \frac{d\sigma}{dE_R}$$

number of target x scattering cross section

 \vec{v} is the DM velocity in the reference frame of the detector.

$$\frac{dN}{dE_R} = tnN_T \int_{v_{min}} vf(\vec{v}) \frac{d\sigma}{dE_R} d\vec{v}$$

► Noting the following:

$$n = rac{
ho}{m_{\chi}}$$
 and $N_T = rac{M_T}{m_N}$ and $\epsilon = tM_T$

We can write

$$\frac{dN}{dE_R} = \epsilon \frac{\rho}{m_{\chi} m_N} \int_{v_{min}} v f(\vec{v}) \frac{d\sigma}{dE_R} d\vec{v}$$

$$\frac{dN}{dE_R} = tnvN_T$$

> We need to consider the DM particles are described by their local velocity distribution, $f(\vec{v})$, were

We need to integrate all possible DM velocities with their corresponding probability density and $v_{min} = \sqrt{\frac{m_{\chi} E_R}{2\mu^2}} = to produce a recoil$ of energy E_R .

where
$$M_T$$
 is the total mass of the target
and m_N is the mass of an individual nucleus

Elements of Ideal Event Rate in Direct Detection:

Elastic scattering happens in the extreme non-relativistic case in the lab frame.

$$E_R = \frac{\mu_N^2 v^2 (1 - \cos \theta_R)}{m_N}$$

need input from astrophysics, particle physics and nuclear physics

Minimum WIMP velocity which can cause a recoil of energy E_R .

$$v_{min} = \sqrt{\frac{m_N E_R}{2\mu^2}}$$

ere
$$\mu = \frac{m_{\chi}m_N}{m_{\chi} + m_N}$$
 and θ_R = scattering angle

Elements of Ideal Event Rate in Direct Detection:

Event rate is found by integrating over all recoils:

$$R = \int_{E_T}^{\infty} dE_R \frac{\rho_0}{m_N m_{\chi}} \int_{v_{min}}^{\infty} v f(v) \frac{d\sigma_{\chi N}}{dE_R} (v, E_R) dv$$

threshold energy

approximated as isotropic.

$$\frac{d\sigma}{d\cos\theta} = const$$

$$\frac{dR}{dE_R} = \frac{\rho_0}{m_N m_\chi} \int_{v_{min}}^{\infty} v f(v)$$

Minimum WIMP velocity which can cause a recoil of energy E_R .

$$v_{min} = \sqrt{\frac{m_N E_R}{2\mu^2}}$$

> The scattering cross section takes place in the non-relativistic limit. Thus, it can be

tant = -

► Recall, $E_R^{max} = 2\mu^2 v^2 / m_N$. That means we can write ...

$$E_R = E_R^{max} \frac{1 + \cos \theta}{2} \longrightarrow \frac{dE_R}{d\cos \theta} = \frac{E_R^{max}}{2}$$

► From this we can write

$$\frac{d\sigma}{dE_R} = \frac{d\sigma}{d\cos\theta} \frac{d\cos\theta}{dE_R} = \frac{\sigma}{2} \frac{2}{E_R^{max}}$$

nucleus. So,...

$$q = \sqrt{2m_N E_R} \sim MeV \qquad \rightarrow the$$

► So, light nuclei, the DM particle sees the nucleus as a whole, w/o substructure.

 $\frac{d\sigma}{d\cos\theta} = \frac{\sigma}{2}$

$$=\frac{\sigma}{E_R^{max}} = \frac{m_N}{2\mu} \frac{\sigma}{\nu^2}$$

> Recall that the momentum transfer for non-relativistic processes can neglect the kinetic energy of the

de Broglie length is on the order of fm.

- of coherence.
- ► The WIMP-nucleon cross section can be separated:

$$\frac{d\sigma}{dE_R} = \left[\left(\frac{d\sigma}{dE_R} \right)_{SI} + \left(\frac{d\sigma}{dE_R} \right)_{SI} \right]$$

Spin-Independent + Spin-Dependent

To calculate, add coherently the spin and scalar components

$$\frac{d\sigma}{dE_R} = \frac{m_N}{2\mu_N^2 v^2} \begin{bmatrix} \sigma_0^{SI} F_{SI}^2 - \sigma_0^{SI} F_{SI}^2 \\ Particle \end{bmatrix}$$
Particle Theory

Heavier nuclei require inclusion of the nuclear form factor to account for the loss

SI arise from scalar or vector couplings to quarks.

SD arise from axial-vector couplings to quarks.

Nuclear

Structure

 $F(E_R) = Form factor encodes the$ dependence on the momentum transfer.

$$\frac{d\sigma_{\chi N}}{dE_R} = \frac{m_N}{2\mu_N^2 v^2} \left[\sigma_0^{SI} F_{SI}^2 + \sigma_0^{SD} F_{SD}^2 \right]$$

Spin Independent: Woods-Saxon Form Factor

$$F(q) = \left(\frac{3j_1(qR_1)}{qR_1}\right)^2 e^{-q^2s^2/2}$$

 $j_{1} = spherical Bessel Function = \frac{\sin(x)}{x^{2}} - \frac{\cos(x)}{x}$ q = momentum transfer

s = nuclear skin thickness ($\simeq 1$ fm) $R_1 =$ effective nucleus radius

55

 $\frac{d\sigma_{WN}}{dE_R} = \frac{m_N}{2\mu_N^2 v^2} \left[\sigma_0^{SI} F_{SI}^2 + \sigma_0^{SD} F_{SD}^2 \right]$

Spin Dependent Interactions

$$F^2(E_R) = \frac{S(E_R)}{S(0)}$$

 $S(E_R) = a_0^2 S_{00}(E_R) + a_1^2 S_{11}(E_R) + a_0 a_1^2 S_{01}(E_R)$

$$a_0 = a_p + a_n \text{ and } a_1 = a_p - a_n$$

 $S_{ij} \longrightarrow$ isoscalar, isovector and interference form factors

 $a_{i,j} \longrightarrow isoscalar, isovector coupling$

 $\frac{d\sigma_{WN}}{dE_R} = \frac{m_N}{2\mu_N^2 v^2} \left[\sigma_0^{SI} F_{SI}^2 + \sigma_0^{SD} F_{SD}^2 \right]$

Spin-Independent

Assume low momentum transfer:

- In most models f_n ~ f_p (scalar fourfermion coupling constants)
 - Scattering adds coherently with A² enhancement

Scales with spin of the nucleus
 No coherent effect!

$$\left(\sigma_{0}^{SD} = \frac{32G_{F}^{2}\mu^{2}}{\pi}\frac{J+1}{J}\left[a_{p} < S_{p} > + a_{n} < S_{n} >\right]^{2}\right)$$

$=\frac{32G_F^2\mu^2}{\pi}$	$\frac{J+1}{J}$	$\left[a_p < S_p > + a_n < \right]$						
		L				$4\langle S_p \rangle^2 (J+1)$	$\frac{4\langle S_n \rangle^2 (J+1)}{4\langle S_n \rangle^2 (J+1)}$	
Nucleus	Z	Odd Nucleon	J	$\langle S_p \rangle$	$\langle S_n \rangle$	3J	3J	"Scaling Factors"
¹⁹ F	9	р	1/2	0.477	-0.004	9.10×10^{-1}	6.40×10^{-5}	
²³ Na	11	р	3/2	0.248	0.020	1.37×10^{-1}	8.89×10^{-4}	
²⁷ Al	13	р	5/2	-0.343	0.030	2.20×10^{-1}	1.68×10^{-3}	
²⁹ Si	14	n	1/2	-0.002	0.130	1.60×10^{-5}	6.76×10^{-2}	
³⁵ Cl	17	р	3/2	-0.083	0.004	1.53×10^{-2}	3.56×10^{-5}	
³⁹ K	19	р	3/2	-0.180	0.050	7.20×10^{-2}	5.56×10^{-3}	
⁷³ Ge	32	n	9/2	0.030	0.378	1.47×10^{-3}	2.33×10^{-1}	
⁹³ Nb	41	р	9/2	0.460	0.080	3.45×10^{-1}	1.04×10^{-2}	
¹²⁵ Te	52	n	1/2	0.001	0.287	4.00×10^{-6}	3.29×10^{-1}	
¹²⁷ I	53	р	5/2	0.309	0.075	1.78×10^{-1}	1.05×10^{-2}	
¹²⁹ Xe	54	n	1/2	0.028	0.359	3.14×10^{-3}	5.16×10^{-1}	
¹³¹ Xe	54	n	3/2	-0.009	-0.227	1.80×10^{-4}	1.15×10^{-1}	
Tovey et al., PLB 488 17(2000)								JINGLAB

Relic WIMP Distribution: Simplified Model

► WIMPs are distributed in isothermal spherical halos with Gaussian velocity distribution (Maxwellian)

$$f(\vec{v}) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{|\vec{v}|^2}{2\sigma^2}}$$

► The speed dispersion is related to the local circular speed

$$\sigma = \sqrt{\frac{3}{2}} v_c \quad \text{where} \quad v_c = 220 \text{ km/s}$$

➤ The density profile of the sphere is

$$\rho(r) \propto r^{-2}$$
 and $\rho_0 = 0.3 \ GeV/c^2$

 \blacktriangleright Particles with speeds greater than v_{esc} are not gravitationally bound. Hence, the speed distribution needs to be truncated.

$$v_{esc} = 650 \text{ km/s}$$

How many dark matter particles in a 2 liter bottle? recall that 1 liter = 0.001 m^3 120 particles \longrightarrow for 5 GeV/c² 10 particles \longrightarrow for 60 GeV/c²

Density of WIMPs in Your Work area

- ► The local dark matter density is $\rho_0 = 0.3 \ GeV/cm^3$
- Pick your favored mass for the dark matter particle

 $m = 5 \ GeV/c^2$ $m = 60 \ GeV/c^2$

► What is the number density?

60,000 particles/m³ \longrightarrow for 5 GeV/c² 5,000 particles/m³ \longrightarrow for 60 GeV/c²

Maybe Not that Simple?

- that describes the WIMP-nucleon interactions.

One "Spin independent"

- ► Two "Spin Dependent"
- Three "Velocity-Dependent"
- > Two pairs of these interfere, resulting in eight independent parameters that can be probed

The effective field theory of dark matter direct detection

A. Liam Fitzpatrick,^a Wick Haxton,^b Emanuel Katz,^{a,c,d} Nicholas Lubbers,^c Yiming Xu^c

► Effective Field Theory considers leading order and NLO operators that can occur in the effective Lagrangian

► Contains 14 operators, that rely on a range of nuclear properties in addition to the SI and SD cases. They combine such that the WIMP-nucleon cross section depends on six independent nuclear response functions:

http://arxiv.org/abs/1211.2818 http://arxiv.org/abs/1308.6288 http://arxiv.org/abs/1405.6690 http://arxiv.org/abs/1503.03379

$$\begin{split} \mathcal{O}_{1} &= \mathbf{1}_{\chi}\mathbf{1}_{N} \\ \mathcal{O}_{3} &= i\vec{S}_{N} \cdot \left[\frac{\vec{q}}{m_{N}} \times \vec{v}^{\perp}\right] \\ \mathcal{O}_{4} &= \vec{S}_{\chi} \cdot \vec{S}_{N} \\ \mathcal{O}_{5} &= i\vec{S}_{\chi} \cdot \left[\frac{\vec{q}}{m_{N}} \times \vec{v}^{\perp}\right] \\ \mathcal{O}_{6} &= \left[\vec{S}_{\chi} \cdot \frac{\vec{q}}{m_{N}}\right] \left[\vec{S}_{N} \cdot \frac{\vec{q}}{m_{N}}\right] \\ \mathcal{O}_{7} &= \vec{S}_{N} \cdot \vec{v}^{\perp} \\ \mathcal{O}_{8} &= \vec{S}_{\chi} \cdot \vec{v}^{\perp} \\ \mathcal{O}_{9} &= i\vec{S}_{\chi} \cdot \left[\vec{S}_{N} \times \frac{\vec{q}}{m_{N}}\right] \\ \mathcal{O}_{10} &= i\vec{S}_{N} \cdot \frac{\vec{q}}{m_{N}} \\ \mathcal{O}_{11} &= i\vec{S}_{\chi} \cdot \frac{\vec{q}}{m_{N}} \\ \mathcal{O}_{12} &= \vec{S}_{\chi} \cdot \left[\vec{S}_{N} \times \vec{v}^{\perp}\right] \\ \mathcal{O}_{13} &= i\left[\vec{S}_{\chi} \cdot \vec{v}^{\perp}\right] \left[\vec{S}_{N} \cdot \frac{\vec{q}}{m_{N}}\right] \\ \mathcal{O}_{14} &= i\left[\vec{S}_{\chi} \cdot \frac{\vec{q}}{m_{N}}\right] \left[\vec{S}_{N} \cdot \vec{v}^{\perp}\right] \\ \mathcal{O}_{15} &= -\left[\vec{S}_{\chi} \cdot \frac{\vec{q}}{m_{N}}\right] \left[\left(\vec{S}_{N} \times \vec{v}^{\perp}\right) \cdot \frac{\vec{q}}{m_{N}}\right] \end{split}$$

► The EFT framework parameterizes the WIMPnucleus interaction in terms of the 14 operators listed to the left.

$$\vec{v}^{\perp} = relative \ velocity \ between \ incoming$$

 $WIMP \ and \ nucleon$
 $q = momentum \ transfer$
 $\vec{S}_{\chi} = WIMP \ spin$
 $\vec{S}_{N} = nucleon \ spin$

► In addition, each operator can independently couple to protons or neutrons.

> Note \mathcal{O}_2 is not considered as it cannot arise from the non-relativistic limit.

arxiv: 1503.03379

Dark Matter Could Look Different in Different Targets

- Nuclear responses for different target elements vary. Some EFT operations have momentum dependance. EFT Operators can interfere.
 - \blacktriangleright Example illustrates differences evaluating at the \mathcal{O}_8 and \mathcal{O}_9 constructive interference vector.
 - Results in different rates between targets AND different spectral shapes.
- ► A robust dark matter direct detection program with different target materials will be needed to nail down which operators are contributing to any detected signal
- Take home message: We will need multiple targets to map out the physics of WIMP-nucleon interactions!

Event Rates are Extremely Low!

- Elastic scattering of WIMP deposits small amounts of energy into a recoilir nucleus (~few 10s of keV)
- Featureless exponential spectrum with no obvious peak, knee, break ...
- Event rate is very, very low.
- Radioactive background of most materials is higher than the event rate.

Need large exposures (mass x time)!

E_{thresh}[keV]

The Low-Mass WIMP Challenge

A WIMP must have a minimum velocity to produce a recoil.

Need Low Energy Threshold!

The Event Rates Are Extremely Low!

Expected WIMP Spectrum

Measured Banana Spectrum

Gamma measurements with a 3-inch

NaI detector

The Event Rates Are Extremely Low!

Expected WIMP Spectrum

 ~ 1 event per kg per year

(nuclear recoils)

Measured Banana Spectrum

~100 events per kg per year (electron recoils)

Signals

Time Dependence

- ➤ The Earth's orbit around the Sun leads to a time dependence (annual modulation) in the differential rate.
 - Earth's speed wrt the galactic rest frame is largest in the summer when the components of Earth's orbital velocity in the direction of solar motion is largest.
 - ► The number of WIMPs with his (low) speeds in the detector rest frame is largest (smallest) in summer.
 - ► As a result, we expect the differential rate to have an annual modulation with a peak in the summer and minimum in the winter.

Time Dependence of the Signal

$$\frac{dR}{dE_R}(E_R,t) \approx \frac{dR}{dE_R} \left[1 + \Delta(E_R)\cos\frac{2\pi}{dE_R} \right]$$

perioa

VOLUME 33, NUMBER 12

Detecting cold dark-matter candidates

Andrzej K. Drukier Max-Planck-Institut für Physik und Astrophysik, 8046 Garching, West Germany and Department of Astronomy, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138

Katherine Freese and David N. Spergel Department of Astronomy, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138 (Received 2 August 1985)

Earth's orbital speed is much smaller than Sun's circular speed ($\frac{V_{orb}}{2} \simeq 0.07$). We can Taylor expand the differential rate to a first approximation. Annual Modulation

Taking T = 1 year and $t_0 = 150$ days, the differential event rate peaks in Dec for small recoil energies and in the summer for large recoil energies.

Signal Modulation: Directional Dependence

- ► The Earth's motion wrt the Galactic rest frame produces a direction dependence of the recoil spectrum.
- > The peak WIMP flux comes from the direction of solar motion, points towards Cygnus.
- > Assuming a smooth WIMP distribution, the recoil rate is peaked in the opposite direction.
- ➤ In the lab frame, this direction varies over the course of a day due to Earth's rotation.

Signal Modulation: Directional Dependence

- day.
- Assuming a Standard Halo model, the dependence is given by

PHYSICAL REVIEW D

PARTICLES AND FIELDS

Motion of the Earth and the detection of weakly interacting massive particle

David N. Spergel dvanced Study, Princeton, New Jersey 08540

> The number of NR along a particular direction in the lab frame will change over the course of a

$$\frac{\left[v_{b}+v_{c}\right)\cos\gamma-v_{min}]^{2}}{\sigma_{v}^{2}}$$

where $v_{orb}^{E} = Earth's$ velocity parallel to direction solar motion γ = angle between recoil and direction of

solar motion

> A detector measuring the axis and direction of the recoil with good angular resolution needs only a few tens of events to distinguish DM from isotropic background.

1	15 N	IARC	н 1	988

Backgrounds

Background Sources

- Environmental radioactivity
 - includes airborne radon and it's daughters
- ► Radio-impurities in materials used for the detector construction and shield
- ► Radiogenic neutrons with energies below 10 MeV
 - > Neutrons from (α, n) and fission reactions
- Cosmic rays and their secondaries
- Activation of detector materials near Earth's surface

Others that we have not yet identified?

Aside: Reminder of Radioactive Decay

► Activity [decays/time] is a measure of the decay rate of a radionuclide.

$$A = \frac{dN}{dt} = \lambda N \qquad \qquad \lambda = decay$$
$$N = total$$

➤ The decay constant is the probability that a radioactive atom will decay.

$$\lambda = \frac{\ln 2}{t_{1/2}}$$

► The number of atoms of the radioisotope present is given by

$$N = \frac{Avogadro's Number}{atomic mass of the radionucla}$$

► Abundance refers to the relative portions of stable isotopes of an element.

- constant
- number of radioactive atoms

 $\frac{1}{1}$ × mass of the radionuclide

