

2023/06/27

Underground Science - Day 3

Jodi Cooley

Executive Director I SNOLAB Professor of Physics I Queen's University Adjunct Research Professor I SMU

Last Time:

- Discussed the different backgrounds that come into play in underground physics and the tools and techniques used to understand, mitigate and characterize those backgrounds.
- Discussed the DAMA/LIBRA excess, possible interpretations and their pitfalls.

Worldwide Effort to Test DAMA/Libra

Crystal	Mass (kg)	Powder	Alpha rate (mBq/kg)	⁴⁰ K (ppb)	²³⁸ U (ppt)	²³² Th (ppt)	<mark>Light yield</mark> (p.e./keV)
Crystal 1	8.3	AS-B	3.20 ± 0.08	43.4 ± 13.7	< 0.02	1.31 ± 0.35	14.88 ± 1.4
Crystal 2	9.2	AS-C	2.06 ± 0.06	82.7 ± 12.7	< 0.12	< 0.63	14.61 ± 1.4
Crystal 3	9.2	AS-WS II	0.76 ± 0.02	41.1 ± 6.8	< 0.04	0.44 ± 0.19	15.50 ± 1.6
Crystal 4	18.0	AS-WS II	0.74 ± 0.02	39.5 ± 8.3		< 0.3	14.86 ± 1.5
Crystal 5	18.0	AS-C	2.06 ± 0.05	86.8 ± 10.8		2.35 ± 0.31	7.33 ± 0.7
Crystal 6	12.5	AS-WSII	1.52 ± 0.04	12.2 ± 4.5	< 0.018	0.56 ± 0.19	14.56 ± 1.4
Crystal 7	12.5	AS-WSII	1.54 ± 0.04	18.8 ± 5.3		< 0.6	13.97 ± 1.4
Crystal 8	18.3	AS-C	2.05 ± 0.05	56.15 ± 8.1		< 1.4	3.50 ± 0.3
DAMA			< 0.5	< 20	0.7 - 10	0.5 – 7.5	5.5 – 7.5

COSINE-100

- Located in Yangyang Laboratory, South Korea
- ► 8 copper encapsulated NaI(Tl) crystals
 - ► 106 kg total
- ► Two 3-inch PMTs per crystal
 - ► trigger at ~0.2 p.e. threshold
- Calibration via sources through tubes
- ► Total Background: 2 4 x DAMA/LIBRA avg. (2.7 cpd/kg/keV on average in 2 - 6 keV ROI)
- ► U/Th/K below DAMA, ²¹⁰Po very close
- ► High light yield

PRL 123.031302

⁶⁰Co source

COSINE-100 Modulation Search

- ► 1.7 years (97.7 kg x years) exposure
- ► Global fit using cosmogenic and sinusoidal components simultaneously for crystals
- Crystal 1, 5, and 8 excluded in this analysis due to low light yield and excessive PMT noise
- Sideband events decrease exponentially, agrees with known cosmogenic components

COSINE-100 Results

Configuration	χ^2	d.o.f.	p-value	Amplitude $(counts/keV/kg/day)$	Phase (Days)
COSINE-100	175.3	174	0.457	$0.0092{\pm}0.0067$	$127.2 {\pm} 45.9$
DAMA/LIBRA (Phase1+Phase2)	—	—	_	$0.0096{\pm}0.0008$	145 ± 5
COSINE-100	175.6	175	0.473	$0.0083 {\pm} 0.0068$	152.5 (fixed)
COSINE-100 (Without LS)	194.7	175	0.143	$0.0024{\pm}0.0071$	152.5 (fixed)
ANAIS-112	48.0	53	0.67	-0.0044 ± 0.0058	152.5 (fixed)
DAMA/LIBRA (Phase1+Phase2)	71.8	101	0.988	$0.0095{\pm}0.0008$	152.5 (fixed)

PRL 123.031302

► Best fit amplitude and phase for 2 - 6 keV

- ► 0.0092 ± 0.0067 cpd/kg/keV
- ► 127.2 ± 45.9 days

- ► The result is consistent with both the null hypothesis and DAMA/LIBRA's best fit value
- \blacktriangleright Expect 3 σ coverage of DAMA region within 5 years of data exposure
- ► Future analyses will utilize at least a 1 keV threshold and improved event selection to reduce the exposure required for 3σ coverage.

Phys. Rev. D 103, 102005

ANAIS 112

- ► Located in Hall B at the Canfranc Laboratory (2450 mwe).
- ► NaI(Tl) crystals (12.5 kg each) grown from ultra pure NaI powder and housed in OFE copper.
 - > 112.5 kg of NaI(Tl), distributed in a 3×3 array of modules.
- Mylar window for low energy calibration
- ► Two Hamamatsu R12669SEL2 photomultipliers
 - Low background, high quantum efficiency.

ANAIS 112: 3-Year Background Models

- Three independent background modeling procedures:
 - Exponentially decaying background
 - Probability distribution function derived from background model
 - Probability distribution function for every detector to account for possible systematic effects related with the different backgrounds and efficiencies of the different modules.

ANAIS 112: 3 Year Results

Energy region	Model	χ ² /NDF null hyp	nuisance params	Sm cpd/kg/keV	p-value mod	p-value null
	1	132 / 107	3	-0.0045 ± 0.0044	0.051	0.051
[1-6] keV	2	143.1 / 108	2	-0.0036 ± 0.0044	0.012	0.013
	3	1076 / 972	18	-0.0034 ± 0.0042	0.011	0.011
	1	115.7 / 107	3	-0.0008 ± 0.0039	0.25	0.27
[2-6] keV	2	120.8 / 108	2	0.0004 ± 0.0039	0.17	0.19
	3	1018 / 972	18	0.0003 ± 0.0037	0.14	0.15

- ► Data support the absence of modulation in both energy region and three background models.
- ► Best fits are incompatible with DAMA/LIBRA at 3.3 σ in the [1-6] keV region and 2.6 σ in the [2-6]keV region

Liquid Noble Experiments

Property (unit)		Xe	Ar	Ne
Atomic Number		54	18	3 10
Mean relative atomic mass		131.3	40.0	20.2
Boiling Point $T_{\rm b}$ (K)		165.0	87.3	27.1
Melting Point $T_{\rm m}$ (K)		161.4	83.8	3 24.6
Liquid density at $T_{\rm b}~({\rm g~cm^{-3}})$		2.94	1.40) 1.21
Volume fraction in Earth's atmos	phere (ppm)	0.09	9340) 18.2
Scintillation light wavelength (nm	ı)	175	128	3 78
Triplet lifetime (ns)		27	1600	15000
Singlet lifetime (ns)		3	7	<18
Electron mobility (cm ² V ^{-1} s ^{-1})		2200	400	low
Scintillation yield (photons/keV)		42	40) 30
Material	Ar	Kr		Xe
Gas				
Ionization potential I (eV)	15.75	14.0	0	12.13
W values (eV) 26.4 ^a		24.2	a	22.0 ^a
Liquid				
Gap energy (eV) 14.3		11.7	7	9.28
W value (eV)	23.6 ± 0.3^{b}	18.4 ± 0	0.3 ^c	15.6 ± 0.3^{d}

Liquid Noble Properties

- ► Three different noble liquids have been considered for dark matter detection over the past few decades.
- Properties of the noble liquids determine many practical aspects of the detectors. For example, Xe has a high density and a large target mass (favorable) but it is not very abundant in the atmosphere (more expensive).
 - ► The energy loss of an incident particle in noble liquids is shared between excitation, ionization and subexcitation electrons liberated in the ionization process
 - ► The average energy loss in ionization is slightly larger than the ionization potential or the gap energy, because it includes multiple ionization processes
 - ► As a result, the ratio of the W-value (average energy) required to produce an electron-ion pair) to the ionization potential or gap energy equals 1.6 - 1.7

https://arxiv.org/pdf/1207.2292.pdf

Liquid Noble Signal Production

 Energy is transferred to a particle by excitation, ionization or heat (atomic motion).

$e^- + R \rightarrow R^* + e^-$	impact excitation
$R^* + R \rightarrow R_2^{*,\nu}$	excimer formation
$R_2^{*,\nu} + R \rightarrow R_2^* + R$	relaxation
$R_2^* \rightarrow R + R + hv$	VUV emission

$e^- + R \rightarrow R^+ + 2e^-$	ionization
$R^+ + R + R \to R_2^+ + R$	
$e^- + R_2^+ \rightarrow R^{**} + R$	recombinati
$R^{**} + R \rightarrow R^* + R + heat$	
$R^* + R + R \rightarrow R_2^* + R + \text{heat}$	
$R_2^* \rightarrow R + R + hv$	VUV emissi

ion

ion

Liquid Noble Detectors

- Dual Phase TPCs (XENON, LUX/LZ, Darkside PandaX, etc)
 - ► Interactions in the liquid produce excitation and ionization.
 - Excitation leads to scintillation light emission
 - phase (S1).

- ► In the gas phase, electrons are further accelerated producing proportional scintillation (S2).
- > PMTs on the bottom and top of the chamber record scintillation signals.
- Distribution of S2 give xy coordinates, drift time gives z coordinates
- ► Ratio of S2/S1 discriminates electron and nuclear recoils

► Ionization electrons are drifted with an applied electric field into the gas

Xenon1T

LUX

Nuclear recoils are measured through a combination of scintillation light and ionization. The nuclear recoil energy is related to S1 by

L_{eff} accounts for the quenching of the scintillation signal for a nuclear recoil.

$$L_{eff} \equiv \frac{S1(E_{nr})/E_{nr}}{S1(122keV_{ee})/122keV_{ee}}$$

122 γ line from ⁵⁷Co source

The nuclear recoil energy is related to S2 by

Status Of Current TPC Dark Matter Experiments

XENONnT

LZ

2019-2025 8T LXe

2021-2025

7t LXe

Taking Data

PandaX-4T

2020 - ? 4t LXe

DarkSide-20K

Bubble Chambers

► The threshold for bubble nucleation is given by

$$E_{T} = r\pi r_{c}^{2} \left(\sigma - T \left[\frac{d\sigma}{dT} \right]_{\mu} \right) + \frac{4\pi}{3} r_{c}^{3} \rho_{b} (h_{b} - h_{l}) - \frac{4\pi}{3} r_{c}^{3} (P_{b} - P_{l})$$

surface	bulk	reversible
energy	energy	work

 ρ = density and h = specific heat

NIM A 781 (2015) p96

How Do Bubble Chambers Work?

Start with a bubble in a liquid in thermal and chemical equilibrium

$$T_l = T_b$$

- ► If $P_b > P_l$ the bubble will expand (assuming no surface tension).
- > Include surface tension, $P_s = 2\sigma/r$, bubble grows when

$$P_b > P_l + P_s$$

Leads to
$$r > r_c = \frac{2\sigma}{P_b - P_l}$$

► Bubbles that do not meet this criteria collapse

Detector Response

- Heavier particles have higher thresholds
- ► Tune the chamber to be unresponsive to most backgrounds(ER).
- Underground location and shielding to mitigate neutrons.

Physics Letters B 711 (2012) 153–161

Liquid Noble Properties

PICO Program

Ken Clark

PICO-2L Results

PICO-40L Begins Operations!

PICO-40L bubbles! Regular operations began in February.

Courtesy of the PICO Collaboration.

Cryogenic Solid State Detectors

Cryogenic Detectors: Phonon and Heat Signals

- ► Two families of sensors for phonon signal: themal and athermal
 - Thermal sensors wait for the full thermalization of the phonons within the bulk of the detector and the sensor itself
 - ► Athermal sensors detect fast, nonequilibrium phonons
- ► Temperature increase is equal to the deposited energy over the heat capacity of the system.
- Two most widely used technologies to measure these signals are neutron doped germanium sensors (NTD) and transition edge sensors (TES)

NTDS

- ► NTDs are small Ge semiconductor crystals that have been exposed to a neutron flux to make a large, controlled density of impurity.
- ► NTD measures small temperature variations relative to T_{0} , which is set to be on the transition from superconducting and resistance regime with dependence of the resistance with temperature T
- Resistance is continuously measured by flowing current through it and measuring the resulting voltage.
- Sensors are glued onto detector.

Transition Edge Sensors

- ► TES is a thin superconducting film operated near its T_c.
- Refrigerator temperature needs to be close to absolute zero.
- A heater with an electothermal feedback system maintains temperature at superconducting edge.
- Temperature changes are detected by a change in the feedback current, collected by a SQUID.

SuperCDMS SNOLAB Detectors

- Initial payload 4 towers, each w/6 detectors (1.39 kg Ge crystals, 0.61 kg Is crystals) each 100 mm diameter, 33.3 mm thick:
 - ► 2 HV (4 Ge + 2 Si)
 - ► 2 iZIP (6 Ge & 4 Ge + 2 Si)
- ► iZIP detectors
 - 8 phonon channels + 2 charge sensors each side
- ► HV detectors
 - ► 6 phonon channels on each side

iZIP Detector

SuperCDMS - iZIP Mode

- Primary (prompt) phonon and ionization signals allow for discrimination between NR and ER events
- High resolution phonon and charge readout
- ► All surface and ER backgrounds above a few keV can be easily removed with selection criteria.

SuperCDMS - HV Mode

 Drifting electrons across a potential (V) generates a large number of phonons (NLT phonons)

 Drifting electrons across a potential (V) generates a large number of phonons (N phonons)

- Ultra high resolution indirect charge measurement
- ► Thresholds 75 eVee and 56 eVee
- ► No yield or detector face discrimination

On Units

We know that NTL phonon energy is given by

$$E_{NTL} = N_{eh}V_b$$

The number of electron hole pairs generated in an interaction is given by

$$N_{eh} = \frac{E_r}{\epsilon} \qquad \epsilon_{Ge=3.0 \, \text{eV}}$$

The total energy (phonon) is given by

$$E_t = E_r + eV_b N_{eh}$$

NR produce eh-pairs less efficiently than ER. Take this into account, define $Y \equiv 1$ for ER. for ER. $N_{eh} = Y(E_r) \frac{E_r}{\epsilon}$

The total energy can then be written

$$E_{tot} = E_r \left(1 + Y(E_r) \frac{eV_b}{\epsilon} \right)$$

If we calibrate detectors using ER, the resulting energy scale is keV_{ee} to convert to keV_{nr} equate for NR and ER.

$$E_{nr}\left(1+Y(E_{nr})\frac{eV_b}{\epsilon}\right) = E_{ee}\left(1+Y(E_{ee})\frac{eV_b}{\epsilon}\right)$$

recall Y = 1 for ER

$$E_{nr} = E_{ee} \left(\frac{1 + eV_b/\epsilon}{1 + Y(E_{nr})eV_b/\epsilon} \right)$$

How to Determine Y?

- Either you need to measure it directly or model it.
- ► The most utilized model is from Lindhard.

$$Y(E_{nr}) = \frac{k \cdot g(\epsilon)}{1 + k \cdot g(\epsilon)}$$

where

$$g(\epsilon) = 3\epsilon^{0.15+0.7\epsilon^{0.6}+\epsilon}$$

$$\epsilon = 11.5E_{nr}(keV)Z^{-7/3}$$

$$Z = atomic number$$

Aside: Energy

The total energy (phonon) is given by recoil energy

$$[keV_{nr}]$$

$$E_{tot} = E_r + eV_b N_Q$$

total phonon energy

Neganov-Luke Phonons

> Assuming that an event is an ER and that the detector bias voltage is 3V, the recoil energy in [keV_{ee}] can be expresses as

$$E_r = E_{tot} - eV_b N_Q$$

= $E_{tot} - eV_b \frac{E_Q}{\epsilon}$
= $E_{tot} - E_Q$
 $\epsilon_{Ge=3.0 \text{ eV}}$

Assuming that an event is a NR, a smaller correction for the Luke phonons is applied. The mean ionization energy for nuclear recoils $(\mu_{Q,nr}(p_t))$ is determined using calibration data from a 252Cf source. $E_r(p_t) = p_t - \mu_{Q,NR}(p_t)$ total phonon _ Luke energy energy

where $\mu_{Q,NR} = AE_r^B$

KeV_{ee} vs KeV_{nr}

- Ionization energy vs recoil energy assuming NR scale consistent with Luke phonon contributions for NR.
 - ER recoils are pushed to higher energies using the NR scale.
 - Example 10.4 keV_{ee} ER line appears at ~16 keV_{nr}

*A good reference is David Moore's thesis, Chapters 3 and 4 http://thesis.library.caltech.edu/7043/

SuperCDMS SNOLAB

- Generation-2 dark matter experiment under construction at SNOLAB
- ► Infrastructure:
 - depth ~6900 mwe (results in a factor 100 reduction in muon flux from cosmic rays as compared to Soudan)
 - ► class 2000 or better cleanroom
 - Cryostat will be able to accommodate up to 7 towers
 - ► (0.1) dru gamma background
 - ► 15 mK base temperature
 - ► vibration isolation
- ➤ Initial payload: ~ 30 kg total, 4 towers with 6 detectors per tower (12 iZIP, 12 HV)

SuperCDMS Dark Matter Sensitivity

Traditional NR:	iZIP, B
Low Threshold NR:	iZIP, limit
HV Mode:	HV, no
Electron Recoil:	HV, no
Absorption (Dark Photons, ALPs)	HV, n

Background free ited discrimination o discrimination o discrimination

CRESST Experiment Operation Principles

- Search of light DM direct interactions
 with CaWO₄ cryogenic detectors
- ► Operating temperature ~15 mK
- Second cryogenic detector to collect emitted scintillation light: particle identification
- ► Single detector mass ~24 g
- Energy Threshold: 30 eV

Light Yield 40 50 100 Energy (keV) reflective and scintillating housing light detector (with TES) block-shaped target crystal (with TES) CaWO₄ iSticks (with holding clamps & TES)

Limitations: CRESST-III Recent Results

 (cm^2) 32 **10^{−33} ⁼ 10^{–34}** '10⁻³⁵ ` ^₄10^{–36} ¹10⁻³⁷ 10⁻³⁸ C E E **10**⁻³⁹ <u>с</u> ark

- ► More than one order of magnitude improvement at 0.5 GeV/c2
- ► Extended reach from 0.5 GeV/c2 to 0.16 GeV/c2
- Sensitivity limited by unknown background below 200 eV

CRESST Upgrade

- ► Upgrade to 288 readout channels to accommodate 100 modules for O(2 kg) target mass
- Final planning, prototyping and testing of SQUID read-out electronics, biasing system and DAQ
- Sensor development to further push detector threshold (10 eV)
- ► Complementary detector materials (LiAlO₂,) which also yield sensitivity for spin-dependent interactions

CRESST Future Plans

Run3 2020 - 2021

- ► 2nd round with additional modifications.
- ► Successful cool-down in 03/2020, but stopped due to Corona virus pandemic
- ► Cool-down started July 20, 2020
- Detetor commissioning Aug Oct 2020
- ► November 2020 August 2021 science data!
- ► Following science run, dedicated neutron calibration runs to study low energy event excess.

Single e-/h+ Pair Sensitivity

uper CDM

41

Energy Scale in Semiconductors

- e- excitation momentum and energy scales in semiconductors can be exploited to search for light mass dark matter
- ► Si $E_{gap} \sim 1.2 \text{ eV}$
 - Indirect band gap requires phonon for transition to happen.
 - Temperature dependent
- $\succ \epsilon_{Si} \sim 3.6 \text{ eV}$
 - Average energy to produce e/h pair
 - Temperature dependent
- > Sensitive to energy deposits of $\mathcal{O}(eV)$ (electron scattering) to $\mathcal{O}(10 \text{ eV})$ (nuclear scattering)

Realm of Solid State Physics

Solid state physics

E < 30 eV

Multi-body system

Allowed energies/momenta given by dispersion relation

Particles may have effective masses

Particle masses well defined

- $E = p^{2}/2m$
- E > keV

- Free particles

Detector Response

Details of the band structure become increasingly important

Detector Response

- > Details of the band structure become increasingly important
- > PDF to get the numbers of e/h pairs given an energy deposition required, $P(n_{eh}|E_{dep})$
 - Fano statistics (dispersion probabilities)
 - ► For NR: quenching (ionization yield < 1)

Detector Response

- > Details of the band structure become increasingly important
- > PDF to get the numbers of e/h pairs given an energy deposition required, $P(n_{eh}|E_{dep})$
 - Fano statistics (dispersion probabilities)
 - ► For NR: quenching (ionization yield < 1)
- ► Crystal impurities can lead to partial energy deposits —> gives events between quantization peaks

Detector Response

- > Details of the band structure become increasingly important
- > PDF to get the numbers of e/h pairs given an energy deposition required, $P(n_{eh}|E_{dep})$
 - ► Fano statistics (dispersion probabilities)
 - ► For NR: quenching (ionization yield < 1)
- ► Crystal impurities can lead to partial energy deposits —> gives events between quantization peaks
- ► Backgrounds
 - ► Spectral information about radioactive decays at eV scale required.

41

Detector Response

- > Details of the band structure become increasingly important
- > PDF to get the numbers of e/h pairs given an energy deposition required, $P(n_{eh}|E_{dep})$
 - ► Fano statistics (dispersion probabilities)
 - For NR: quenching (ionization yield < 1)
- \blacktriangleright Crystal impurities can lead to partial energy deposits —> gives events between quantization peaks
- Backgrounds

> Spectral information about radioactive decays at eV scale required.

- Relevance is exposure dependent
- ► IR and optical photons become significant backgrounds at lowest energies.

Detector Response

- > Details of the band structure become increasingly important
- > PDF to get the numbers of e/h pairs given an energy deposition required, $P(n_{eh}|E_{dep})$
 - ► Fano statistics (dispersion probabilities)
 - ► For NR: quenching (ionization yield < 1)
- ► Crystal impurities can lead to partial energy deposits —> gives events between quantization peaks

► Backgrounds

- ► Spectral information about radioactive decays at eV scale required.
 - ► Relevance is exposure dependent
- ► IR and optical photons become significant backgrounds at lowest energies.
- Dark/leakage current can be significant, dominant background at lowest energies.

HVeV Detectors

- ➤ Single-hole e/h-pair resolution devices will have sensitivity to a variety of sub-GeV DM models with g*d exposures
- > 0.93 g Si crystal (1 x 1x 0.4 cm³) operated at 50-52 mK at a surface test facility.
- ► Exposure: 3.0 gram-days (collected over 3 days)
 - ► operation voltage: 100 V
 - ► energy resolution: $\sigma_{ph} = 3 \text{ eV}$
 - > charge resolution: $\sigma_{eh} = 0.03 \text{ e}^{-h^+}$
- ► Calibrations with in-run monochromatic 635 nm laser fibercoupled to room temperature.
- > Data selection criteria were applied to remove leakage and surface events.

arXiv:2005.14067 PRL 121, 051301 (2018) APL 112, 043501 (2018) NIM A 963, 163757 (2020)

Edelweiss RED 30 Detector: HV Operation

- ► 33.4 g (20 x 20 mm) Ge bolometer with NTD sensor and electrodes operated in LSM (5 μ /m2/d)
- ► Exposure: 2.44 days

► operation voltage: 78 V

- ► energy resolution: $\sigma_{ph} = 44 \text{ eV}$ (1.6 eVee)
- ► charge resolution: $\sigma_{eh} = 0.53 \text{ e-h+}$
- ► Calibrations using 71Ge KLM (0.16, 1,30 and 10.37 keV) activation lines from AmBe neutron source.
- Data selection criteria were applied to remove events occurring in the NTD (instead of the crystal).

Edelweiss RED 30 Detector: HV Operation

- Heat only events (those not affected by NTL amplification) are the main source of backgrounds.
 - ► 10⁶ DRU @ 10 eVee
 - ► 1.5 x 10⁵ DRU @ 25 eVee
- ► Dominant limitation for >3 e- signals
- May hypothesis have been studied as to the origin. No single contributor has been found
 - These events are probably multiple sources.

(dru = event/day/keV/kg)

Conclusions - Dark Matter

- The next decade will be very exciting for dark matter direct detection. Various G2 Experiments will come online, covering a lot of new parameter space.
- > Although WIMPs remain a very interesting dark matter candidate, other scenarios are gaining traction in the theoretical community, while new ideas for direct searches have been proposed and are gaining momentum.
- ► Given the wealth of theoretical possibilities, a diversity of experimental designs and targets will be needed to constrain the theory and couplings of any discovered signal.

