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the QFT

L = 1
2
∂µφ(□+m2)∂ µφ + λ3(∂µφ∂ µφ)□φ + λ4(∂µφ∂ µφ)2

▶ 4-derivatives, both in the interaction terms and the kinetic
terms

▶ dimensionless real scalar field φ(x) and dimensionless
couplings λ3 and λ4

▶ shift symmetry φ → φ + c

▶ m2 breaks the classical scale invariance
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proxy for quadratic gravity

▶ Einstein action is supplemented with terms quadratic in
curvature, and these terms bring in 4-derivatives

▶ 4-derivatives in kinetic and interaction terms

▶ both theories are renormalizable

▶ the shift symmetry is playing the role of coordinate invariance
of the gravity theory

▶ the m2∂µφ∂ µφ is playing the role of the Einstein term

▶ at low energies this term dominates; left with a normal
massless field with non-renormalizable interactions
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UV completeness

▶ both theories are UV complete, and so we can see what
happens at energies much higher than m

▶ also refer to this as the m → 0 limit

▶ ultra-Planckian energies in the case of gravity

▶ the story turns out to be very similar for the two theories,
since it is really just about the physics of four derivatives

▶ scalar theory is easier to deal with, so will focus on that

▶ return to quadratic gravity at the end
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ghost

▶ propagator has massive pole with abnormal sign residue

▶ the negative norm state is said to be in conflict with unitarity

▶ what is actually meant by this is that the theory may have
problems with positivity

▶ S-matrix unitarity can still be defined in the presence of
negative norm states

▶ S1S† = 1 where 1 =
∑

X
|X⟩⟨X|
⟨X|X⟩ reflects the negative norms

▶ S-matrix unitarity means that probability is conserved
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optical theorem

▶ also the optical theorem can be directly verified in
perturbation theory by keeping track of minus signs

▶ the LHS is imag part of forward scattering amplitude, and its
calculation is affected by any wrong-sign propagators

▶ the RHS is a scattering process into on-shell final states, and
this is affected by any negative norms among these states

▶ it can thus be seen that the LHS and RHS of the optical
theorem are both affected in such a way that it remains
satisfied
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positivity

▶ if the issue is positivity rather than unitarity then this at least
leaves some room open for discussion

▶ there are certainly some abnormal minus signs floating
around in calculations, but the question is whether physical
quantities that should be positive, can end up being positive

▶ this needs some investigation

▶ our focus will be on the positivity constraint in the high
energy limit, but we will return to lower energies
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β-functions

▶ renormalization of ∂µφ□∂ µφ term is treated as a standard
wave function renormalization

dλ3

d lnµ
= − 5

4π2 (λ4λ3 +
3
4
λ3

3)

dλ4

d lnµ
= − 5

4π2 (λ
2
4 + λ4λ

2
3)
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renormalization group flow
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▶ arrows point to the UV
▶ asymptotic freedom in UV
▶ some flows also show asymptotic freedom in IR
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a new mass scale

▶ flow towards IR stops when the energy scale drops below m;
this is the transition to the low energy theory

▶ the crossover to this low energy theory may occur at weak
couplings, in which case the theory remains perturbative at all
scales

▶ but for sufficiently small m, the flow towards the IR can result
in large couplings

▶ creates a new mass scale through dimensional transmutation

▶ it is this that can be the origin of Planck mass in gravity
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outline

▶ describe a simplified method for calculating in the high
energy limit

▶ old method involves decomposing φ into two degrees of
freedom

▶ in new method there appears to be only one degree of
freedom at high energies

▶ calculate the optical theorem and a differential cross section
as functions of λ3 and λ4

▶ this gives expressions that we can test for positivity

▶ positivity picks out the allowed region on the RG flow plane
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a related issue

▶ four derivative interaction terms apparently produce
diverging amplitudes at large momenta

▶ nonstandard cancellations take place at the cross section level
(also in quadratic gravity)

▶ the reduction to effectively one degree of freedom at high
energies clarifies what is happening

▶ makes more clear the origin of good high energy behaviour
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mass derivative

▶ four derivative propagator G(4)(p2, m2) can be written in
terms of the Feynman propagator

G(2)(p2, m2) =
1

p2 − m2 + iϵ

as

G(4)(p2, m2) = −G(2)(p2, m2)− G(2)(p2, 0)
m2

▶ thus in the m → 0 limit (high energy limit)

lim
m→0

G(4)(p2, m2) = lim
m→0
(− d

dm2 )G
(2)(p2, m2)
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mass derivative in optical theorem

▶ the imaginary part of a forward scattering amplitude Ai→i is
extracted by cutting propagators and using

Im(G(2)(p2, m2)) = −iπδ(p2 − m2).

▶ the analog for G(4) in the m → 0 limit is

lim
m→0

Im(G(4)(p2, m2)) = −iπ lim
m→0
(− d

dm2 )δ(p
2 − m2)

▶ the additional operation, − limm→0
d

dm2 , also works on the
RHS of the optical theorem
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RHS of optical theorem

▶ each on-shell particle in a final state f should be assigned its
own dummy mass mj

▶ |Ai→f |2 will depend on the values of these mj’s via the on-shell
conditions

▶ take the mass derivatives, then the mj → 0 limits, then the
phase space integral

▶ term on the RHS of the optical theorem corresponding to the
final state f takes the form

lim
mj→0

 n∏
j=1

(− d
dm2

j
)|Ai→f (m1..mn)|2



15



|Ai→f(m1..mn)|2 for φφ → φφ

2

▶ new method reproduces the usual sum over the φφ final
states
▶ in that sum, for each φ, choose one mass, then the other,

insert a minus sign for the negative norm, and divide by m2,
due to the way field is normalized
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now the LHS of optical theorem

▶ imaginary part of the forward scattering amplitude

▶ various diagrams are of order λ2
4, λ4λ

2
3 or λ4

3
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calculate diagrams for LHS

▶ can again use mass derivatives and mj → 0

▶ limit is smooth since the imaginary part has no infrared
divergences

▶ can thus use the massless G(4) propagator directly

G(4)(p2, 0) = − 1
(p2 + iϵ)2

▶ square of a Feynman propagator can be handled by standard
methods for calculating one-loop diagrams

▶ 4-derivative vertices still complicate the calculation
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optical theorem for φφ → φφ

▶ calculate the two sides of the optical theorem independently

LHS = RHS =
s2

6π
(6λ4

3 + 19λ2
3λ4 + 14λ2

4)

▶ the equality demonstrates S-matrix unitarity

▶ both sides calculated without decomposing φ field into
positive and negative norm parts

▶ RHS naively goes like s4, being the square of amplitudes that
go like s2

▶ is reduced to s2 behaviour because of − d
dm2 applied twice
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the positivity constraint

▶ LHS = RHS is negative for −6
7 < λ4/λ

2
3 < −1

2

▶ this region is shaded orange, and the red line is λ4 = −1
2λ

2
3
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meaning of red line

▶ the red line marks the boundary between two sets of flows
that are qualitatively different

▶ the flows below this line will eventually enter the orange
region in the UV

▶ thus all such flows are forbidden

▶ the allowed flows are on or to the right of the red line

▶ these couplings are asymptotically free in the UV and can
become strong in the IR
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two degrees of freedom?

▶ consider the two fields constructed from φ,

ψ1 =
1

m2 (□+m2)φ

ψ2 =
1

m2□φ

▶ when expressed in terms of ψ1 and ψ2 the kinetic term of the
Lagrangian becomes

−m2

2
ψ1□ψ1 +

m2

2
ψ2(□+m2)ψ2

▶ ψ1 and ψ2 are the two fields of definite mass (0 and m) and
definite norm (+ and −)

▶ but we also see that φ = ψ1 −ψ2
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one degree of freedom

▶ φ = ψ1 −ψ2 is the only combination that appears in all the
interaction terms

▶ we have introduced the operation − limm→0
d

dm2 for every
external φ line, and this also treats ψ1 and ψ2 on equal
footing with a relative minus sign

▶ the external state matches the interacting state

▶ the apparent two degrees of freedom have been reduced to
one
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differential cross section for φφ → φφ

▶ treat it as a single process and take four mass derivatives

▶ need the dependence on the set of four masses mj

▶ before taking mass derivatives, would diverge as ∼ (s2)2/s for
large s

▶ a term ∼ m2
1m2

2m2
3m2

4/s is needed to survive four
m2

j -derivatives and mj → 0

▶ in the end we have a differential cross section that behaves
like 1/s at large s times a function of the scattering angle

▶ reason for good high energy behaviour is now clear
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result

▶ the differential cross section for φφ → φφ scattering at high
energies

dσ
dΩ
=
((
λ4

3 − 4λ2
4
)

sin(θ )6 + 24λ2
4 sin(θ )4 +

(
−48λ4

3 − 96λ2
3λ4

)
sin(θ )2

+64λ4
3 + 128λ2

3λ4
)
/(16π2 sin(θ )4 s)

▶ this result is positive definite for any θ as long as λ4 ≥ −1
2λ

2
3

▶ this is the same constraint as before!

▶ interesting special case on the red line:

dσ
dΩ
=

3λ2
4

2π2s
when λ4 = −1

2
λ2

3
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the λ4 ≥ −1
2λ

2
3 constraint
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▶ positivity has picked out the running couplings that flow to
strong coupling in the infrared
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QCD analogy

▶ we have been able to work in the asymptotically free regime
where the perturbative degrees of freedom are appropriate

▶ this is similar to using perturbative QCD to study scattering of
quarks and gluons at very high energies, even though quarks
and gluons are not the asymptotic states

▶ they are not because of strong interactions at intermediate
energies

▶ so what are the asymptotic states in the 4-derivative theory?
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asymptotic states

▶ with strong interactions, the poles of the bare propagators
need not correspond to true asymptotic states of the theory

▶ another example, the sigma meson — has a width of order its
mass ∼ 0.5 GeV — and is in no way an asymptotic state

▶ for both the scalar theory and the gravity theory, we need to
suppose that the ghost is not an asymptotic state

▶ as long as asymptotic states have positive norm, all
probabilities are positive

▶ virtual effects of the ghost are okay
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shift symmetry

▶ the massless field ψ1 = 1
m2 (□+m2)φ transforms under the

shift symmetry ψ1 → ψ1 + c in the same way as φ does

▶ we can suppose that this shift symmetry is not broken by the
strong interactions

▶ then ψ1 survives as a true asymptotic state

▶ we end up with one degree of freedom, at whatever energy
scale is used to probe the theory

▶ this is either ψ1, or ψ1 −ψ2 in the perturbative high energy
description
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quadratic gravity

S = − 1
16πG

∫
d4x

√
−g

(
R+

RµνRµν − 1
3R2

m2
G

− R2

6m2
S

)

▶ introduces massive spin-2 ghost and massive scalar

▶ Gm2
G is a dimensionless and asymptotically free coupling

▶ spin-2 sector has graviton and ghost — completely analogous
to ψ1 and ψ2

▶ our comments about ψ1 and ψ2 also apply to the graviton
and the ghost — except that the shift symmetry is replaced by
coordinate invariance
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ghost summary

▶ in high energy limit the ghost is entering on an equal footing
as a perturbative degree of freedom

▶ it plays an intrinsic role in achieving positivity and
well-behaved cross sections

▶ this high energy picture is independent of whether or not the
ghost is an asymptotic state

▶ but in the full theory, not being an asymptotic state seems to
be required
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quadratic gravity gives change of perspective

▶ on very small — standard QFT picture at ultra-Planckian
energies

▶ on very large — arbitrarily large, horizonless, classical
solutions, called 2-2-holes
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what is a 2-2-hole?

▶ gravitationally bound ball of relativistic gas

▶ compactness essentially the same as a black hole

▶ integrate the entropy density of the gas to get the total
entropy S22

T∞S22 = TBHSBH =
M
2

S22

SBH
= 0.7548N

1
4

(
mG

mPl

) 1
2

≳ 1

▶ N is number of species, S22 ∝ N
1
4 is a feature, not a bug
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position space propagator

▶ standard position space propagator G(2)(x2, m2)

G(2) =
−imθ (x2)
4π2

√
x2

K1(im
√

x2) +
mθ (−x2)
4π2

√
−x2

K1(m
√

−x2) +
i

4π2δ(x
2)

▶ taking the mass derivative and then m
√

x2 → 0

G(4) = −θ (x
2)

8π2 K0(im
√

x2)− θ (−x2)
8π2 K0(m

√
−x2)

≈ θ (x
2)

8π2

(
log(m

√
x2) +

iπ
2

)
+
θ (−x2)

8π2 log(m
√

−x2)

▶ gives independent boundary condition on the full propagator
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