UV complete 4-derivative scalar field theory

Bob Holdom

Puzzles in the Quantum Gravity Landscape
Perimeter Institute
October 2023

the QFT

$$
\mathcal{L}=\frac{1}{2} \partial_{\mu} \phi\left(\square+m^{2}\right) \partial^{\mu} \phi+\lambda_{3}\left(\partial_{\mu} \phi \partial^{\mu} \phi\right) \square \phi+\lambda_{4}\left(\partial_{\mu} \phi \partial^{\mu} \phi\right)^{2}
$$

- 4-derivatives, both in the interaction terms and the kinetic terms
- dimensionless real scalar field $\phi(x)$ and dimensionless couplings λ_{3} and λ_{4}
- shift symmetry $\phi \rightarrow \phi+c$
- m^{2} breaks the classical scale invariance

proxy for quadratic gravity

- Einstein action is supplemented with terms quadratic in curvature, and these terms bring in 4-derivatives
- 4-derivatives in kinetic and interaction terms
- both theories are renormalizable
- the shift symmetry is playing the role of coordinate invariance of the gravity theory
- the $m^{2} \partial_{\mu} \phi \partial^{\mu} \phi$ is playing the role of the Einstein term
- at low energies this term dominates; left with a normal massless field with non-renormalizable interactions

UV completeness

- both theories are UV complete, and so we can see what happens at energies much higher than m
- also refer to this as the $m \rightarrow 0$ limit
- ultra-Planckian energies in the case of gravity
- the story turns out to be very similar for the two theories, since it is really just about the physics of four derivatives
- scalar theory is easier to deal with, so will focus on that
- return to quadratic gravity at the end

ghost

- propagator has massive pole with abnormal sign residue
- the negative norm state is said to be in conflict with unitarity
- what is actually meant by this is that the theory may have problems with positivity
- S-matrix unitarity can still be defined in the presence of negative norm states
$-S \mathbb{1} S^{\dagger}=\mathbb{1}$ where $\mathbb{1}=\sum_{X} \frac{|X\rangle\langle X|}{\langle X \mid X\rangle}$ reflects the negative norms
- S-matrix unitarity means that probability is conserved

optical theorem

- also the optical theorem can be directly verified in perturbation theory by keeping track of minus signs
- the LHS is imag part of forward scattering amplitude, and its calculation is affected by any wrong-sign propagators
- the RHS is a scattering process into on-shell final states, and this is affected by any negative norms among these states
- it can thus be seen that the LHS and RHS of the optical theorem are both affected in such a way that it remains satisfied

positivity

- if the issue is positivity rather than unitarity then this at least leaves some room open for discussion
- there are certainly some abnormal minus signs floating around in calculations, but the question is whether physical quantities that should be positive, can end up being positive
- this needs some investigation
- our focus will be on the positivity constraint in the high energy limit, but we will return to lower energies

β-functions

- renormalization of $\partial_{\mu} \phi \square \partial^{\mu} \phi$ term is treated as a standard wave function renormalization

$$
\begin{aligned}
\frac{d \lambda_{3}}{d \ln \mu} & =-\frac{5}{4 \pi^{2}}\left(\lambda_{4} \lambda_{3}+\frac{3}{4} \lambda_{3}^{3}\right) \\
\frac{d \lambda_{4}}{d \ln \mu} & =-\frac{5}{4 \pi^{2}}\left(\lambda_{4}^{2}+\lambda_{4} \lambda_{3}^{2}\right)
\end{aligned}
$$

BH, Phys Lett B 138023 (2023)

renormalization group flow

- arrows point to the UV
- asymptotic freedom in UV
- some flows also show asymptotic freedom in IR

a new mass scale

- flow towards IR stops when the energy scale drops below m; this is the transition to the low energy theory
- the crossover to this low energy theory may occur at weak couplings, in which case the theory remains perturbative at all scales
- but for sufficiently small m, the flow towards the IR can result in large couplings
- creates a new mass scale through dimensional transmutation
- it is this that can be the origin of Planck mass in gravity

outline

- describe a simplified method for calculating in the high energy limit
- old method involves decomposing ϕ into two degrees of freedom
- in new method there appears to be only one degree of freedom at high energies
- calculate the optical theorem and a differential cross section as functions of λ_{3} and λ_{4}
- this gives expressions that we can test for positivity
- positivity picks out the allowed region on the RG flow plane

a related issue

- four derivative interaction terms apparently produce diverging amplitudes at large momenta
- nonstandard cancellations take place at the cross section level (also in quadratic gravity)
- the reduction to effectively one degree of freedom at high energies clarifies what is happening
- makes more clear the origin of good high energy behaviour

mass derivative

- four derivative propagator $G^{(4)}\left(p^{2}, m^{2}\right)$ can be written in terms of the Feynman propagator

$$
G^{(2)}\left(p^{2}, m^{2}\right)=\frac{1}{p^{2}-m^{2}+i \varepsilon}
$$

as

$$
G^{(4)}\left(p^{2}, m^{2}\right)=-\frac{G^{(2)}\left(p^{2}, m^{2}\right)-G^{(2)}\left(p^{2}, 0\right)}{m^{2}}
$$

- thus in the $m \rightarrow 0$ limit (high energy limit)

$$
\lim _{m \rightarrow 0} G^{(4)}\left(p^{2}, m^{2}\right)=\lim _{m \rightarrow 0}\left(-\frac{d}{d m^{2}}\right) G^{(2)}\left(p^{2}, m^{2}\right)
$$

mass derivative in optical theorem

- the imaginary part of a forward scattering amplitude $\mathcal{A}_{i \rightarrow i}$ is extracted by cutting propagators and using

$$
\operatorname{Im}\left(G^{(2)}\left(p^{2}, m^{2}\right)\right)=-i \pi \delta\left(p^{2}-m^{2}\right)
$$

- the analog for $G^{(4)}$ in the $m \rightarrow 0$ limit is

$$
\lim _{m \rightarrow 0} \operatorname{Im}\left(G^{(4)}\left(p^{2}, m^{2}\right)\right)=-i \pi \lim _{m \rightarrow 0}\left(-\frac{d}{d m^{2}}\right) \delta\left(p^{2}-m^{2}\right)
$$

- the additional operation, $-\lim _{m \rightarrow 0} \frac{d}{d m^{2}}$, also works on the RHS of the optical theorem

RHS of optical theorem

- each on-shell particle in a final state f should be assigned its own dummy mass m_{j}
- $\left|\mathcal{A}_{i \rightarrow f}\right|^{2}$ will depend on the values of these m_{j} 's via the on-shell conditions
- take the mass derivatives, then the $m_{j} \rightarrow 0$ limits, then the phase space integral
- term on the RHS of the optical theorem corresponding to the final state f takes the form

$$
\lim _{m_{j} \rightarrow 0}\left(\prod_{j=1}^{n}\left(-\frac{d}{d m_{j}^{2}}\right)\left|\mathcal{A}_{i \rightarrow f}\left(m_{1} . . m_{n}\right)\right|^{2}\right)
$$

$\left|\mathcal{A}_{i \rightarrow f}\left(m_{1} . . m_{n}\right)\right|^{2}$ for $\phi \phi \rightarrow \phi \phi$

- new method reproduces the usual sum over the $\phi \phi$ final states
- in that sum, for each ϕ, choose one mass, then the other, insert a minus sign for the negative norm, and divide by m^{2}, due to the way field is normalized

now the LHS of optical theorem

- imaginary part of the forward scattering amplitude
- various diagrams are of order $\lambda_{4}^{2}, \lambda_{4} \lambda_{3}^{2}$ or λ_{3}^{4}

calculate diagrams for LHS

- can again use mass derivatives and $m_{j} \rightarrow 0$
- limit is smooth since the imaginary part has no infrared divergences
- can thus use the massless $G^{(4)}$ propagator directly

$$
G^{(4)}\left(p^{2}, 0\right)=-\frac{1}{\left(p^{2}+i \varepsilon\right)^{2}}
$$

- square of a Feynman propagator can be handled by standard methods for calculating one-loop diagrams
- 4-derivative vertices still complicate the calculation

optical theorem for $\phi \phi \rightarrow \phi \phi$

- calculate the two sides of the optical theorem independently

$$
\mathrm{LHS}=\mathrm{RHS}=\frac{s^{2}}{6 \pi}\left(6 \lambda_{3}^{4}+19 \lambda_{3}^{2} \lambda_{4}+14 \lambda_{4}^{2}\right)
$$

- the equality demonstrates S-matrix unitarity
- both sides calculated without decomposing ϕ field into positive and negative norm parts
- RHS naively goes like s^{4}, being the square of amplitudes that go like s^{2}
- is reduced to s^{2} behaviour because of $-\frac{d}{d m^{2}}$ applied twice

the positivity constraint

- LHS $=$ RHS is negative for $-\frac{6}{7}<\lambda_{4} / \lambda_{3}^{2}<-\frac{1}{2}$
- this region is shaded orange, and the red line is $\lambda_{4}=-\frac{1}{2} \lambda_{3}^{2}$

meaning of red line

- the red line marks the boundary between two sets of flows that are qualitatively different
- the flows below this line will eventually enter the orange region in the UV
- thus all such flows are forbidden
- the allowed flows are on or to the right of the red line
- these couplings are asymptotically free in the UV and can become strong in the IR

two degrees of freedom?

- consider the two fields constructed from ϕ,

$$
\begin{aligned}
& \psi_{1}=\frac{1}{m^{2}}\left(\square+m^{2}\right) \phi \\
& \psi_{2}=\frac{1}{m^{2}} \square \phi
\end{aligned}
$$

- when expressed in terms of ψ_{1} and ψ_{2} the kinetic term of the Lagrangian becomes

$$
-\frac{m^{2}}{2} \psi_{1} \square \psi_{1}+\frac{m^{2}}{2} \psi_{2}\left(\square+m^{2}\right) \psi_{2}
$$

- ψ_{1} and ψ_{2} are the two fields of definite mass (0 and m) and definite norm (+ and -)
- but we also see that $\phi=\psi_{1}-\psi_{2}$

one degree of freedom

- $\phi=\psi_{1}-\psi_{2}$ is the only combination that appears in all the interaction terms
- we have introduced the operation $-\lim _{m \rightarrow 0} \frac{d}{d m^{2}}$ for every external ϕ line, and this also treats ψ_{1} and ψ_{2} on equal footing with a relative minus sign
- the external state matches the interacting state
- the apparent two degrees of freedom have been reduced to one

differential cross section for $\phi \phi \rightarrow \phi \phi$

- treat it as a single process and take four mass derivatives
- need the dependence on the set of four masses m_{j}
- before taking mass derivatives, would diverge as $\sim\left(s^{2}\right)^{2} / s$ for large s
- a term $\sim m_{1}^{2} m_{2}^{2} m_{3}^{2} m_{4}^{2} / s$ is needed to survive four m_{j}^{2}-derivatives and $m_{j} \rightarrow 0$
- in the end we have a differential cross section that behaves like $1 / s$ at large s times a function of the scattering angle
- reason for good high energy behaviour is now clear

result

- the differential cross section for $\phi \phi \rightarrow \phi \phi$ scattering at high energies

$$
\begin{aligned}
\frac{d \sigma}{d \Omega}= & \left(\left(\lambda_{3}^{4}-4 \lambda_{4}^{2}\right) \sin (\theta)^{6}+24 \lambda_{4}^{2} \sin (\theta)^{4}+\left(-48 \lambda_{3}^{4}-96 \lambda_{3}^{2} \lambda_{4}\right) \sin (\theta)^{2}\right. \\
& \left.+64 \lambda_{3}^{4}+128 \lambda_{3}^{2} \lambda_{4}\right) /\left(16 \pi^{2} \sin (\theta)^{4} s\right)
\end{aligned}
$$

- this result is positive definite for any θ as long as $\lambda_{4} \geq-\frac{1}{2} \lambda_{3}^{2}$
- this is the same constraint as before!
- interesting special case on the red line:

$$
\frac{d \sigma}{d \Omega}=\frac{3 \lambda_{4}^{2}}{2 \pi^{2} s} \quad \text { when } \lambda_{4}=-\frac{1}{2} \lambda_{3}^{2}
$$

the $\lambda_{4} \geq-\frac{1}{2} \lambda_{3}^{2}$ constraint

- positivity has picked out the running couplings that flow to strong coupling in the infrared

QCD analogy

- we have been able to work in the asymptotically free regime where the perturbative degrees of freedom are appropriate
- this is similar to using perturbative QCD to study scattering of quarks and gluons at very high energies, even though quarks and gluons are not the asymptotic states
- they are not because of strong interactions at intermediate energies
- so what are the asymptotic states in the 4-derivative theory?

asymptotic states

- with strong interactions, the poles of the bare propagators need not correspond to true asymptotic states of the theory
- another example, the sigma meson - has a width of order its mass $\sim 0.5 \mathrm{GeV}$ - and is in no way an asymptotic state
- for both the scalar theory and the gravity theory, we need to suppose that the ghost is not an asymptotic state
- as long as asymptotic states have positive norm, all probabilities are positive
- virtual effects of the ghost are okay

shift symmetry

- the massless field $\psi_{1}=\frac{1}{m^{2}}\left(\square+m^{2}\right) \phi$ transforms under the shift symmetry $\psi_{1} \rightarrow \psi_{1}+c$ in the same way as ϕ does
- we can suppose that this shift symmetry is not broken by the strong interactions
- then ψ_{1} survives as a true asymptotic state
- we end up with one degree of freedom, at whatever energy scale is used to probe the theory
- this is either ψ_{1}, or $\psi_{1}-\psi_{2}$ in the perturbative high energy description

quadratic gravity

$$
S=-\frac{1}{16 \pi G} \int d^{4} x \sqrt{-g}\left(R+\frac{R_{\mu \nu} R^{\mu \nu}-\frac{1}{3} R^{2}}{m_{G}^{2}}-\frac{R^{2}}{6 m_{S}^{2}}\right)
$$

- introduces massive spin-2 ghost and massive scalar
- $G m_{G}^{2}$ is a dimensionless and asymptotically free coupling
- spin-2 sector has graviton and ghost - completely analogous to ψ_{1} and ψ_{2}
- our comments about ψ_{1} and ψ_{2} also apply to the graviton and the ghost - except that the shift symmetry is replaced by coordinate invariance

ghost summary

- in high energy limit the ghost is entering on an equal footing as a perturbative degree of freedom
- it plays an intrinsic role in achieving positivity and well-behaved cross sections
- this high energy picture is independent of whether or not the ghost is an asymptotic state
- but in the full theory, not being an asymptotic state seems to be required

quadratic gravity gives change of perspective

- on very small - standard QFT picture at ultra-Planckian energies
- on very large - arbitrarily large, horizonless, classical solutions, called 2-2-holes

what is a 2-2-hole?

- gravitationally bound ball of relativistic gas
- compactness essentially the same as a black hole
- integrate the entropy density of the gas to get the total entropy S_{22}

$$
\begin{gathered}
T_{\infty} S_{22}=T_{\mathrm{BH}} S_{\mathrm{BH}}=\frac{M}{2} \\
\frac{S_{22}}{S_{\mathrm{BH}}}=0.7548 N^{\frac{1}{4}}\left(\frac{m_{G}}{m_{\mathrm{Pl}}}\right)^{\frac{1}{2}} \gtrsim 1
\end{gathered}
$$

- N is number of species, $S_{22} \propto N^{\frac{1}{4}}$ is a feature, not a bug

position space propagator

- standard position space propagator $G^{(2)}\left(x^{2}, m^{2}\right)$

$$
G^{(2)}=\frac{-i m \theta\left(x^{2}\right)}{4 \pi^{2} \sqrt{x^{2}}} K_{1}\left(i m \sqrt{x^{2}}\right)+\frac{m \theta\left(-x^{2}\right)}{4 \pi^{2} \sqrt{-x^{2}}} K_{1}\left(m \sqrt{-x^{2}}\right)+\frac{i}{4 \pi^{2}} \delta\left(x^{2}\right)
$$

- taking the mass derivative and then $m \sqrt{x^{2}} \rightarrow 0$

$$
\begin{aligned}
G^{(4)} & =-\frac{\theta\left(x^{2}\right)}{8 \pi^{2}} K_{0}\left(i m \sqrt{x^{2}}\right)-\frac{\theta\left(-x^{2}\right)}{8 \pi^{2}} K_{0}\left(m \sqrt{-x^{2}}\right) \\
& \approx \frac{\theta\left(x^{2}\right)}{8 \pi^{2}}\left(\log \left(m \sqrt{x^{2}}\right)+\frac{i \pi}{2}\right)+\frac{\theta\left(-x^{2}\right)}{8 \pi^{2}} \log \left(m \sqrt{-x^{2}}\right)
\end{aligned}
$$

- gives independent boundary condition on the full propagator

