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Organization

1. Key Distinguishing Features of LQG

2. Illustrative example of applications:

A bridge between theory and observations of the early universe

3. Summary and Outlook.

I will summarize the work of many, many researchers, especially:
Agullo, Baez, Barbero, Bojowald, Dittrich, Engle, Freidel, Gambini, Giesel, Han,
Lewandowski, Livine, Mena, Pawlowski, Pullin, Rovelli, Sahlmann, Singh, Smolin,
Speziale, Thiemann, Varadarajan, Wilson-Ewing & their groups.

This is not meant to be a broad overview. Over 35 years, there have been tens of thousands of

papers by hundreds researchers in LQG! I can only provide glimpses to convey a feel for some of

the foundational ideas and the current status. There are many topics I cannot cover; especially

black holes and Spinfoams. My apologies in advance.

2 / 25



1. LQG: Key Distinguishing Features
1.A. Emergent space-time geometry

At a fundamental level: A background independent theory of connections.
Phase space: Complex, SU(2)-valued pairs (Aia, E

a
i ) on a 3-manifold M . No

background metric ⇒ dynamics determined by constraints: Simplest functions:
Gi := DaEai = 0, Va := EbiFab

i = 0, S := 1
2
ε̊ijk E

a
i E

b
j Fab

k = 0.

They automatically constitute a first class system system!

• No background metric ⇒ Hamiltonian is a linear combination of constraints:
H

Λ, ~N,N
(A,E) =

∫
M

(
ΛiGi + NaVa +NS

)
d3x. As in any gauge theory, the first term

generates an internal SU(2) gauge rotations. The second term generates gauge covariant (GC)

Lie derivatives: Lifts of Diffeos on M to the SU(2) bundle.

• Surprising recent result: the third term generates a generalized gauge
covariant (GGC) Lie-derivative! Ȧia = ε̊ijk L ~Nj A

k
a and Ėai ≈ 1

2
ε̊ij

k L ~Nj E
a
k ,

where Na
j := NEaj . (Furthermore, in the final picture, this turns out to be precisely the

‘time evolution’ in GR, transmuted to ‘space-evolution’ along Na
j !) (AA & Varadarjan)

• The GGC Lie derivative, L~Ui Vj := UbiDbVj − V bj DbV ai ) ≡ [Ui, Vj ]
a, provides a

graded Lie-algebra. Claim: The corresponding infinite dimensional “graded
Lie-group” embodies the entire content of GR dynamics! Understanding its
structure is a fascinating open problem in mathematics.
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Emergence of GR
• So far, just a curious background independent theory of connections. What
does it have do to with gravity? GR, ( -,+,+,+ as well as +,+,+,+), emerges as two
‘real’ sections of the gauge theory phase space. There is a precise dictionary from
(Aia, E

a
i ) to metric (ADM) variables (qab, p

ab) that yields:

Constraints: (ε = 1 ↔ +,+,+,+ and ε = −1 ↔ −,+,+,+)

Ca := −2Db p
ab = 0, and C := − 1

2

(
q

1
2 R+ ε q−

1
2
(
qacqbd − 1

2
qabqcd

)
pab pcd

)
= 0.

Evolution Eqns:
q̇ab = 2N

(
qacqbd − 1

2
qabqcd) pcd

ṗab = ε q
(
qacqbd − qabqcd

)
DcDdN − εN q

(
qacqbd − 1

2
qabqcd

)
Rcd

− N
(
2δadδ

b
nqcm − δamδbnqcd − 1

2
qab(qcmqdn − 1

2
qcdqmn)

)
pcdpmn.

• The RHS has complicated, non-polynomial dependence on (qab, p
ab)! This is

simply because these are ‘composite fields’ whose expressions in terms of the
‘fundamental’ ones (Aia, E

a
i ) are complicated. Analogy: Nuclear Physics ↔ QCD.

• This gauge/gravity duality is unrelated to the AdS/CFT correspondence. Here,
both sides are defined in the bulk; and the duality (i) does not need negative Λ nor
SYSY nor extra dimensions, and (ii) the dictionary is complete, exact and explicit.
The idea to arrive at QG starting from the gauge theory.
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Power of Geometrization: Constraint Algebra

In metric variables the complete derivation of the Poisson bracket calculation takes
over 10 pages (Thiemann’s book, 2007)! Complete derivation in terms of connections:

{CM , CN} ≡ 1
4

∫
Σ

d3xM ε̊ijk
(
Ėai E

b
j Fab

k + Eai Ė
b
j Fab

k + Eai E
b
j Ḟab

k
)
−M ↔ N

= 1
4

∫
Σ

d3xM ε̊ijk

[̊
εi
mn (L ~Nm Ean)Ebj Fab

k − Eai E
b
j ε̊
km

n L ~NmFab
n
]
−M ↔ N

= 1
4

∫
Σ

d3xM
[
(L ~NjE

a
k − L ~NkE

a
j )Eb j Fab

k + EakE
b
j (L ~NjFab

k − L ~NkFab
j)
]
−M ↔ N

= 1
4

∫
Σ

d3x
[
2M L ~Nj (Eak Fab

k)Eb j + 2MEa (kFab
j) (L ~NkE

b
j )
]
−M ↔ N

=

∫
Σ

d3x
(
L ~NjM

a
j

)
Ebk F

k
ab ≡ C~V .

(1)

Note: The right side equals the familiar ADM diffeomorphism constraint with the
structure function V a = ε qab(N∂bM −M∂bN) but ‘geometrizes’ it.

Varadarajan has promoted this geometric action of the Hamiltonian constraint to
full LQG through careful and elaborate constructions.
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2.B New Syntax
• Recall that Einstein discovered GR in two steps: (1) He first recognized that a
curved space-time metric gab incorporates gravity, whence Riemannian geometry is
the natural syntax for gravitational physics; and (2) subsequently, he found the
correct dynamical equations that determines gab. LQG uses the same steps, but
now for quantum gravity.

• The Heisenberg algebra (generated by (qab, p
ab) of geometrodynamics is

replaced by the algebra of holonomies ( or Wilson lines) electric fluxes (AA &

Isham). Highly non-trivial result: A admits a unique background independent
representation (Lewandowski, Okolow, Sahlmann & Thiemann; Fleischhack). (Contrast with

Minkowskian QFTs). The Hilbert space is H = L2(A, dµ̊). Physically interesting
operators are represented by well-defined SA (or unitary) operators on H (AA &

Lewandowski, Baez, ...). Rigorous results; no hidden infinities.

• On this Hilbert space, geometric operators have purely discrete eigenvalues.
Thus Riemannian geometry is quantized exactly in the sense that energy and
angular momentum are quantized for the hydrogen atom. This Quantum
Riemannian Geometry is the LQG syntax to formulate and answer physical
questions of QG (also for topics not covered in this talk: spin foams, investigation of black

hole entropy & evaporation, ... ).
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2.C Quantum Riemannian Geometry
• Geometric observables, ÂS and V̂R, are especially important to discuss physics
(ALMMT, Rovelli & Smolin, Loll, AA & Lewandowski, ...). The smallest non-zero
eigenvalue of ÂS –called the area gap ∆– plays a key role in dynamics because
curvature is defined in terms of holonomies around closed curves (the Wilson
loops). BH entropy calculations yield ∆ ≈ 5.16`2Pl. V̂R plays a key role in the
definition of the Hamiltonian constraint operator (Thiemann).

• The basis that digonalizes these SA operators on H is given by spin network
states N

γ,~j,~I
(A) associated with decorated graphs (Rovelli & Smolin).

They provide truly powerful tools in calculations and facilitate visualization of
Quantum Riemannian geometry.

Vertex↔ chunk of space; Link↔ 2-surface
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2.D Quantum Dynamics: Hamiltonian Approach
• In the Hamiltonian approach a la Dirac, quantum dynamics is incorporated by
solving the quantum constraint equations: Ĉi |Ψ〉 = 0. First, we have to give
precise meaning to the operators Ĉi. The LQG kineamtics/syntax provides
necessary tools (Thiemann, ...). Issue is still open in the WDW theory.

• In classical GR, the structure of the constraint algebra ensures the 4-d Diff
covariance. In geometrodynamics, the action of the vector constraint has a has
direct geometric meaning as the generator of 3-d diffeomorphisms which translates
to their Poisson algebra. But for the Hamiltonian constraints, there is no such
geometric interpretation.

• The key question for quantum dynamics has been: Is the Poisson algebra of
constraints faithfully lifted to the quantum theory? Until recently, in LQG there were

consistent liftings (Thiemann, ...) but not faithful: [ĈM , ĈN ] as well as Ĉ~V vanished on an

appropriate Habitat (Gambini, Lewandowski, Marolf, Pullin).

• Major recent advance: Faithful (and hence also anomaly free) lifting of the
constraint algebra to the quantum level in full Euclidean LQG (Varadarajan).
Crucially uses representation of time evolution as GCC-Lie-derivatives. For the
Lorentzian LQG, there is generalized Wick transform (Thiemann, AA, Varadarajan)

that provides a natural avenue.
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Speziale, Thiemann, Varadarajan, Wilson-Ewing & their groups.

This is not meant to be a broad overview. Over 35 years, there have been tens of thousands of

papers by hundreds researchers in LQG! I only aim to provide glimpses to convey a feel for some

of the foundational ideas and the current status. There are many topics I cannot cover;

especially black holes and Spinfoams. My apologies in advance.
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2. Illustrative Application: LQC

• Quantum Cosmology: Study of the cosmological sector of QG using symmetry
reduction. In effect one focuses on few observables of interest to dynamics of the
universe, e.g., (ρ, ai, R, ..., φ, ...), and traces out other degrees of freedom.

• In LQC: No unphysical matter or new boundary conditions. Rather, quantum
geometry effects change Einstein’s Eqs. Distinguishing feature: Use methods of
full LQG to cosmological models. Again a uniqueness theorem as in full LQG
(AA & Campiglia; Engle, Hanusch, Thiemann). It provides us with a new syntax, leading
to a new Hamiltonian constraint (in place of the WDW equation): Now, the Area Gap
plays a key role! And dynamics is relational (φ ∼ time).

• One finds that quantum geometry creates a brand new repulsive force in the
Planck regime, overwhelming classical attraction. The Big Bang is replaced by a
Big Bounce: ρsup = 18πG~2

∆3 . Analyzed in detail using the Hamiltonian, path
integral, and consistent histories frameworks. (AA, Bojowald, Corichi, Campiglia, Craig,

Henderson, Lewandowski, Martin-Benito, Mena, Pawlowski, Singh, Sloan, Wilson-Ewing, ...)

All strong curvature singularities are resolved in cosmological models (Singh).

10 / 25



Unforeseen Interplay between UV and IR

• Detailed calculations show that quantum geometry effects, that dominate at
the Planck scale leading to singularity resolution, dissipate quickly after the
bounce and become negligible already at the onset of inflation where curvature is
10−12 `−2

Pl . Nonetheless they can leave observable signatures in the CMB.

• In LQC the curvature has a universal upper bound, achieved at the bounce.
Thus, curvature radius is non-zero and provides a length new scale `LQC. During
their pre-inflationary evolution, perturbation modes with λphy � `LQC at the
bounce are unaffected by curvature. So they arrive in the BD vacuum at the
‘onset’ of inflation. But those with λphy & `LQC are not. Therefore, the LQC
effects do leave signatures are in on CMB, but only in the infrared. This is the
unforeseen interplay between UV and IR.

• Detailed calculations: kinematics and dynamics use the same principles as full
LQG. But to make observational predictions additional inputs are needed to select
states of the background FRLW quantum geometry and, as in the standard
inflation, of perturbations. In the approach I will discuss, these are provided by
certain principles that are motivated by LQG quantum geometry at the bounce,
and a quantum extension of Penrose’s Weyl curvature hypothesis.
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Change in the primordial Spectrum
(AA, Gupt, Jeong, Sreenath)

Scalar modes: Standard Inflation predicts a nearly scale invariant primordial power
spectrum: Standard Ansatz (SA): PR(k) = As(

k
k?

)ns−1. In LQC, while the
primordial spectrum is nearly scale invariant on small angular scales (large k),
there is power suppression on large angular scales: PR(k) = f(k) As(

k
k?

)ns−1.
The suppression factor f(k) = 1 for large k and f(k) < 1 for small k.
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Predictions for CMB
• A window of opportunity: Overall, standard inflation is in excellent agreement
with observations. But there are anomalies. Statistical significance of any one
anomaly is small. But two or more of them imply that we live in an exceptional
universe. Can one alleviate this tension?

Planck 2018 Results. I. Overview and the cosmological legacy of Planck ...if any anomalies have

primordial origin, then their large scale nature would suggest an explanation rooted in

fundamental physics. Thus it is worth exploring any models that might explain an anomaly (even

better, multiple anomalies) naturally, or with very few parameters.

• LQC Predictions: Two anomalies are naturally alleviated, preserving all the
successes of standard inflation: (i) Power Suppression for ` < 30 (This scale naturally

descends from LQC dynamics and the choice of states); and, (ii) the lensing amplitude
anomaly (which, e.g., was called “a crisis” by Di Valentino, Melchiorri & Silk).

• Direct Observational Check on the area gap ∆: Make the area gap a variable in
the LQC analysis of CMB, and find the posterior probability of its value using the
Planck data: The value ∆ = 5.17`2Pl from the BH entropy calculations lies within 1
σ. An increase of area gap by a factor of 10, for example, is observationally ruled
out at 95% confidence level (AA, Gupt, Sreenath). Unforeseen synergy and a bridge
from observations to LQG quantum geometry.
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ΛCDM+SA versus ΛCDM+LQC

Parameter SA LQC

Ωbh
2 0.02238± 0.00014 0.02239± 0.00015

Ωch2 0.1200± 0.0012 0.1200± 0.0012
100θMC 1.04091± 0.00031 1.04093± 0.00031

τ 0.0542± 0.0074 0.0595± 0.0079
ln(1010As) 3.044± 0.014 3.054± 0.015

ns 0.9651± 0.0041 0.9643± 0.0042

Comparison between the Standard Ansatz (SA) and LQC.
The mean values and marginalized probability distributions for the six
cosmological parameters calculated using CTT

` . Currently, the relative error in the
measurement of optical depth τ is 13.65% while that in other 5 parameters is less
than 0.4%. In LQC, the value of τ increased by 9.8% relative to the SA!
Independent missions will measure τ more accurately.
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3. Summary and Outlook

• LQG provides a specific syntax for quantum gravity that descends from a
background independent gauge theory. This paves way to a non-perturbative,
background independent approach. In this talk I sketched the Hamiltonian
approach and its application to the early universe. It illustrates that the approach
has sufficiently matured to make contact with observations.

• There have been significant advances also on 3 other fronts: (i) Spinfoams The
path integral approach to dynamics. (Many analytic results, & numerical
computations are getting mature); (ii) Quantum aspects of black holes (Horizon
entropy, singularity resolution, black hole evaporation beyond Hawking effect);
(iii) Interface with Quantum Information (Intertwiner as well as boundary state
entanglement in spin-nets, quantum nature of the Coulombic interaction, testing
the ”dressed metric” framework using photononics).

• LQG is very much an ongoing program. Many interesting problems remain in
all sub-areas. Different groups are working on various open issues: Conceptual,
Mathematical, Numerical aspects of LQG, and applications to astrophysical and
cosmological observations/phenomenology.

15 / 25



SUPPLEMENTARY MATERIAL

(Some details on the material covered as well as that not covered)
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Spinfoams

• Path integral framework better suited to make
contact with low energy QFT. Spinfoams: Sum over
histories of quantum geometries represented by spin
networks. A promising spin foam model has emerged
(Engle, Perini, Rovelli, Livine; Freidel, Krasnov). Numerical
methods developed to efficiently calculate
amplitudes. Important open issues still remain but
very significant ongoing activity (Dittrich, Dona, Han,...)

R
x

x0 • Example: n-point function in a background
independent context. If the boundary spin
network chosen to be sharply peaked on
Minkowski geometry, one recovers the the
standard graviton propagator to leading order.
(Bianchi, Ding, Magliaro, Perini, ...)
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PLANCK data and space-time structure

a =∞t =∞

a = 1t0

tCMB a = 9×10-4
R0(tCMB) = 12.63Mpc

Rmax(tCMB) = 17.29Mpc

Universe according to PLANCK

• Given the data provided by
the PLANCK mission on H0,Ωm

and Ωr, general relativity
determines space-time geometry
to the future of the LSS if we
make the conservative
assumption that the accelerated
expansion due to ‘dark energy’
will continue. A key
consequence is that there are
cosmological horizons.

• Any eternal cosmic observer
will be able to see only a finite
patch of the universe no matter
how long she waits.

• CMB is extraordinarily
homogeneous with tiny, 1 part in
105 fluctuations.
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Selection of the dressed metric ḡab
• There are 3 different levels of quantum geometry manifestations depending on the
observables/probes relevant to the physical problem:

(i) Fundamental level. At the Planck scale: spin networks and associated geometric operators;

t =∞ a =∞

t0 a = 1

tCMB a = 9×10-4

a = e-124

a = e-141

t*

tB

R0(tCMB) = 12.96Mpc

Rmax(tCMB) = 17.24Mpc

R(tB) ≈ 10019 ℓPl

1.57 ℓPl

3.43 × 107 ℓP

Rmax(t*) = 5.40 × 107 ℓPl

Interplay: N
γ,~j,~I

(A), Ψ(a, φ) & ḡab .

(ii) Coarse grained level. One focuses only in a few

macroscopic observables. Described by a wave function

that depends on a few degrees of freedom, e.g.

Ψ(a, bi, φ, ...) in the early universe. ;

(iii) As seen by quantum fields ϕ̂ representing

perturbations propagating on Ψ(a, bi, φ, ...) In LQG, it is

a dressed effective metric – a smooth tensor field ḡab

constructed from the expectation values of the geometric

fields in the Hamiltonian of ϕ̂ in the state

Ψ(a, bi, φ, ...) ⇒ Coefficients of ḡab involve Planck’s

constant. (Appropriate for the CMB analysis.)

• Now, the radius of the CMB sphere shrinks as one goes

back in time. Choose Ψ(a, bi, φ, ...) such that the radius

at the bounce, as measured by ḡab, is the minimum

allowed by full LQG. This choice fixes the e-folds between

the bounce and CMB surface.
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The three angular correlations C(θ)

As emphasized in the literature, (Copi, Schawarz, Spergel, Starkman, PLANCK, . . . )

C(θ) is a better measure of the large scale power suppression anomaly. Visually it
is clear that LQC provides a better fit. Quantitative measure: S1/2 = 42496.5 for SA and

14308.05 for LQC. A significant improvement: a 2/3 reduction !
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Anomaly in the AL − τ plane
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The anomaly arose because the value AL = 1 is outside 1σ contour if one uses the SA

motivated by the standard ansatz. It is alleviated by LQC. There is no longer a motivation to

introduce spatial curvature; “a possible crisis in cosmology” pointed out by (Di Valentino,

Melchiorri, Silk) no longer exists.
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Black Hole Evaporation

t = tin

t = tout

• In 4-d, detailed calculation available only in the external
field approximation. Hawking Effect: QFT on the classical
space-time of a collapsing star. When extrapolated to include
the intuitively expected change in the space-time geometry if
the back-reaction is included, the BH disappears at the end of
the process. If the incoming state is the vacuum, the outgoing
state is is a mixed state (which, at late times, is thermal).

Apparent loss of unitarity! Reason: The t = tout surface is not the complete future
boundary; it does not register the ‘part of the state that fell into the singularity’.

• The heuristic expectation is much more transparent with
the Penrose digram on the right that Hawking included in his
1974 paper. Because the future boundary of space-time again
includes a singularity, information is lost. State at Σi

determines the state at Σf but not vice versa. In 4-d, there is
no detailed calculation of the back-reaction even today; so
this widely used Penrose diagram is still based on the original
heuristics (even though Hawking himself changed is mind in 2016.)

i−

i+

uEH

i0

I +

I −

Σi

Σ f
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Back Reaction in a 2-d model
The Callan-Giddings-Harvey-Strominger Model

• Gravitational collapse of a massless scalar field gives rise to a BH. Model is
exactly soluble in the classical theory. Hawking effect is realized in the external
field approximation –again a thermal flux at late times. Back reaction has been
included through detailed calculations using a mixture of analytical and high
precision numerical simulations (AA, Pretorius, Ramazanoglu; Ori)

• Examples of Results for the semi-classical space-time:

? The singularity is tamed by back reaction. The physical
metric g is continuous there  metric can be continued
to a larger space-time. Furthermore, the singularity stays
well away from I+.

? There is no thunderbolt singularity. No Firewall. Metric
across ‘the last ray’ is smooth.

? What forms and evaporates is the dynamical horizon H.

I+
R

I−
R

I+
L

I−
L

z− z+

singularity last ray

dynamical
horizon

collapsing
matter

There is no event horizon in the semi-classical space-time.
Detailed correlations between the decrease in the area of the DH and decrease of (Bondi) mass

measured at infinity: back-reaction ‘in action’ !
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4-d BHs in GR: Semi-classical Regime

Consider the phase in which 1M� initial black hole shrinks to Lunar mass

∼ 10−7M�. The process should be well-described by semi-classical

gravity. Process takes some 1064 years and so a large number N ∼ 1075

modes escape to infinity. State is pure because these are correlated with

the infalling modes.

Apparent ‘information Paradox’: The lunar mass BH has radius
of ∼ 0.1mm! How can such a small ball hold so many modes?
Heuristically, even if they all have a wavelength of ∼ 0.1 mm,
N modes would have a mass ∼ 1022 times the lunar mass! i−

i0

uLR

I +

I −

T-DH

Σi

Σf

!

!

u0

u

Σ

flat

Resolution (Christodoulou, De Lorenzo & Rovelli; AA & Ori): When one solves the
semi-classical equations with physically motivated approximations in the region
enclosed by the DH, one finds that the space-like surfaces Σ develop
astronomically long necks over these 1064 years, stretching ∼ 1062 − 1064 lyrs!
Their ‘mouth’ at the horizon is a sphere only of 0.1mm! The infalling modes get
stretched (as during inflation) and become infrared. One can easily accommodate
N of them inside the Dynamical Horizon! Once we replace EH with DH, the
tension with information loss in the semi-classical regime disappears.
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Beyond Semi-classical Regime

• Already in the semi-classical regime, apparent paradoxes arise
if one takes EHs too seriously. Led to exotic ideas like ‘quantum
Xerox machines’, ‘firewalls’, ‘fast scramblers’ and failure of
semi-classical gravity in tame regimes well beyond the horizon
even for astrophysical BHs. This paradigm has lost momentum
after LIGO discoveries. We saw that the paradox disappears when
geometry inside the DH is examined carefully.

i−

i+

uEH

i0

I +

I −

Σi

Σ f

i−

i0

I +

I −

T-DH

i+

u0

u1
u2

LNS

Στ

flat

AT-DH

• Beyond Semi-classical Theory: Suppose the singularity is
resolved in a consistent theory, as in many current proposals
including Hawking’s Take 2, (Hawking, Pope, Strominger). Then
there is no EH. What forms and evaporates is a DH. Correlations
between modes that escaped early on to I+ and those that were
trapped ‘inside the DH’ in the semi-classical regime could be
restored at I+, because the ‘trapped modes’ could pass through
the quantum region and reach I+. (See, e.g., a review AA:

arXiv:2001.08833.) But how exactly this happens is still very much
under debate. There are proposals and detailed calculations are
being pursued.
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