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BLACK HOLES

Are endlessly fascinating! Manifestation of strong

gravity, and hold clues to guantisation of spacetime.
Black holes thermodynamics is an odd mix of

classical technigues & guantum implications.




Consider the Schwarzschild-AdS metric:
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Black hole horizon defined by =0, look at small changes in f.
Horizon still defined by f(r) = O.
- of OFf

f(re+0ory) = f"(ro)ory - am(Sm — %56 =0
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Changes r+, Changes m,
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ds® = f(r)dt* —




The entropy is given by the area of the horizon, and we
usually calculate the temperature by Euclideanisation:

0S5 = 8mrory T = f'(ry)/4r
The cosmological “constant” defines a pressure term:
A 3 of 22 8712
P=_—__"— = OF¢p_ 2Ty, OfT4
8w 8ml2 B ot 03 ot 3 o

Hence we end up with a First Law

om =ToS +VoP




But it’s interesting to dig deeper...

“* What does dP mean?
*» What about composite systems?

¢ Is our First Law unique”?

+» How do we know what dM is?







The Einstein equations in null gauge become exact on the
event horizons, so can find exact, differential forms of the
various thermodynamic first laws:

» De Sitter patch:
|/<3b‘Ab + |/€C|AC +VA=0
» Black hole first law:

‘IiblAb -+ %A =0
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ACCELERATING BLACK HOLES

()
An accelerating black hole is described by the C-metric‘\

Ll N\ dr? 62 >
=0 2 7o (g He@ 9!@)

Where '
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f:(1—2—m)(1—A2 2) 4 L

r Iz
g=1+2mAcosf  fdetermines horizon structure —
Q=1+ Arcosf black hole / acceleration /



First, focus on the conical defect, K:

Isolating the effect of K (A=0) look on axis through black hole:
6)2

K? dg”

dsg,(b x df?

K relates to tension of “cosmic string” on axis
0 = 2 1 ) 8
p— g7l _— — p— g7l
K H




Th ~ 6 (r) diag (1, 41, 0, 0)

A string produces a conical deficit,
but no long range spacetime ) = 1@} Lt




Return to the Schwarzschild-AdS metric, but with a deficit

9 E 2 7
ds® = f(r)dt2 ;Z(i) r? _d92 sin? «9%_
Still have the same relation:
, 20m T4
f(ry +0ry) = f(ry)ory 00 =0




But while temperature has the same expression, the
entropy has changed:




. 1 1
Tension is related to K: h=7 (1 — —)

K
SO easily get 5, K
saye

Finally - 3 v 473




Putting together:
2K m
0="" (T5S +2(m — 1y )du+ VP — 5(?))

So identify M — m
K

Then also get Smarr relation:

M =2TS5 - 2PV




The term multiplying the variation in tension is a
“thermodynamic length”

A=7L—m

Reinforces interpretation of M as enthalpy, if black
hole grows, it swallows some string, but has also
displaced the same amount of energy from
environment.




Here, we have derived thermodynamics of a non-
Isolated black holes — a black hole threaded by a
cosmic string.

The string happily joins in with the thermodynamic
game and has its own thermodynamic charge and
potential.

The metric has three free parameters: [ m { K }]

and we have three charges: [M P /L]
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Acceleration is when an object is not travelling on a geodesic.

VT & T
For an observer at R=R, in AdS:
R? dR? :
ds% o — (1 + 6—2)61752 oo R? (d@2 + sin? @dng)
g2

The tangent vector is purely timelike, but the acceleration is
radial:

1 0 Ry 0

T = B AZVTT:




The magnitude of the 1 o
acceleration is related T = 2 Ot
to Rp \/1 T

‘A|2 _ R%/€4
L+ R5/? |\ RO
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Set m to zero:
()L — 4 — 1203

9 21— A%
ds” = (14 Arcos6)? =1 (2
Then use the coordinate transformation
R? 14 (1— A%0%)r? /47 r sin 0
14+ — = Rsin©® =
vz 1—azz)oz 0 o 0

to get back to global AdS
2 RA\ o, dR? 212 L w2 o AP




rom an ofr-centre

perspective. An observer

hovering away from
centre of AdS is
accelerating.
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BLACK HOLE

The slowly accelerating black hole
In AdS is displaced from centre. It
has a conical deficit running from
the horizon to the boundary. The
string tension provides the force
that hold the black hole off-centre.




Putting together, A gives the acceleration of the black hole,
driven by an imbalance between North and South axes that
now have different conical deficits.

1+ 2mA)?
¢ 00 43, oc d6? + ¢ — S 24y
1 —2mA)?
e 0> d537¢o<d92—|—( K?’ ) (m — 6)?dg?
B _@ B _1iQmA . ,
5i—27r( I )-2#(1 7 )- 8T b+
We often make N axis regular, with deficit on S axis
Sy =0= K =1+ 2mA 5g = oA oA
N =U= =1+4+2m S = K Hs = K




Based on experience with the Kerr-AdS metric (and motivated
by the coordinate transformation for slowly accelerating Rindler)
we have a possible rescaling of the time coordinate

1 2 2 . 2
ds? — 2{f [@ sz@dw] _Z . T d92_h(9)sme[adt_

H o K f(r) h(0) Yir? e K

This will rescale temperature, and also changes computations of
the mass.

f(r):(l_AQTQ)ll_ 2m+a2—|—e2] r? + a®

r r2



Using the usual Euclidean method, find temperature:

__ f-/l- _ 1 - 2) T?I- -

1" = — 2
47 27T e

Which depends on alpha, and entropy:

2
Tr

K(1— A%r3)
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Expand the metric near the boundary (Fefferman-Graham):

— _Af_ZFn (€) 2"
cosé’zf—l—ZGn (&) 2"

1
r

F., and G, determined by the requirement that

1
ds® = —0%dz? + ") ['yw, i zQ\IfW i Z3MW} dxtdx” + O(zZ)




For the boundary metric, get:

(1= AC9©) (1= AC9) \» g
Q2 F(€) F?(£)g(¢)

2

(&) (1 — A202g(¢))

2
KFEE) 0

And for the boundary fluid stress tensor:

(T,)") = diag{pE, —pe/2 + 11, pp/2 — 11}

m
where PE = E(l — A%?g)3/2(2 — 3A%¢%g)



CONICAL DEFICIT




Integrate up the boundary stress-energy to get the mass:
M

M:/pEﬁ:?

What is alpha? Setting m to zero, and demanding that the
boundary is a round 2-sphere gives

a=\/1— A2/2

Get a consistent first law with corrections to V and TD
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MANY HORIZONS?

What if we have multiple horizons” In vacuo, we can have
multiple black holes along an axis separated by strings or
struts: Bach-Weyl or Israel-Khan solutions.

ds? = e2Vdt? — 2=V (dr? + d2?) — 7«26—27@
— ad




THERMODYNAMICS

Yet again, with some fairly hefty algebraic manipulation,
we were able to show that the combined black hole
system satisfies a first law:

dM = [TrdS; — Ardpr]

With the thermodynamic length given by the worldsheet
volume of the string connecting black holes.
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Now can derive thermodynamics of complicated
systems of multiple black holes connected by possibly
infinite strings.

The charged rotating slowly accelerating C-metric has

O parameters:
m ¢ Q a A K|

and we have six charges:

[MPQJM+ u—]

Full cohomogeneity




To some extent, finding a first law by consistency is
unsatisfying! There are claims of alternate first laws, but
these tend to have constrained parameters.

While we do not have a proof, the existence of the
chemical expressions and the full conomogeneity are

compelling reasons to conclude we have the correct
First Law.




The original discussion of Bardeen, Carter, and
Hawking gave a clear relation for dM, the change in
mass of the black hole, in terms of infalling matter.
For a vacuum spacetime, this is unambiguous as we
can measure mass at infinity.

For de Sitter however, we can use the slow-roll
solution to explore what is dM. The scalar field slowly
rolls and accretes onto the black hole.




Idea is to turn e.o.m for ¢

o | R oW
f 2 (,r f¢7r),r o a¢

into something like a slow roll equation by assuming ¢ = ¢(T),
where

T =1t+&(r)

T is constructed so that ¢ is regular at both horizons, with only




ubstitute In:

(2 £€) cb—— 1)(25'2 ==

Dropping second term, and remember ¢ = ¢(T), we
must have |

— (r7f¢) = -

y constant, and hence

p 1 P




-ind y and B by regularity: ¢(T) must be ingoing on event
norizon and outgoing on cosmological horizon.
~inal answer gives T:

1 — 7, 1 —
T'=1t-— log i - log .
2K Te 2Kp T
—F log — + log
e —Th 0 4KpTy 4/<;Crc T

T looks like Kruskal V at the black hole horizon (r,) and
Kruskal U at the cosmological horizon (r)




The T coordinate is timelike at each horizon, and could be a
cosmological time asymptotically.

SINGULARITY FUTURE INFINITY




We can solve the Einstein equations perturbatively in the
slow roll parameters, and obtain expressions for the

change in M and A

. .2
M(T) = 47 B¢° A(T) = —37%
p
On the horizon: M(T) = 4n BTy,
A 8= ryTe (o +7e) > 2
— 743 — 7"3 = Tb
c b

l.e. the increase in mass is not the energy-momentum



* Have shown how to include composite systems in black
hole thermodynamics

= Conjugate variable for tension is Thermodynamic Length

* Thermodynamics of accelerating black holes is computable
— non-static and non-isolated.

» \We can also do time dependent thermodynamics and
construct more nuanced black hole solutions.

* How much do we trust these techniques?




