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General Relativity is an extremely elegant and successful theory. 

Observations coming from the LIGO/Virgo, the EHT, and the GRAVITY 
collaborations are in agreement with the prediction of general relativity. 

However, there are also reasons to extend GR. In particular, the theory 
predicts its own breakdown due to the formation of singularities 

Weak Cosmic Censorship Conjecture: 
Singulari*es are hidden from an observer at infinity by the event horizon. 

It is tempting to assume that any effect of the singularity or of the 
regularisation will be hidden from us. 

Introduction



Let us imagine having no access to high energy particle or strong 
gravity phenomena. 

Newtonian gravity represent an excellent approximation. 

Should we accept the impossibility of probing physics beyond 
Newton? 

Why do we care: A lesson from Newtonian gravity

We should not exclude that modifications to general relativity can propagate outside black holes

No, e.g. gravitational waves! 



Why do we care 2: Black hole evaporation

!

L.Buonifante, F.D.F, S. Mukohyama arXiv:2107.05662 
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Outline
Non-singular black holes candidates 

Viability issues 

Addressing the viability issues?



Non-singular black holes candidates
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Consider spacetimes where a trapping surface is formed and 

a) Pseudo-Riemannian geometry provides an adequate description of spacetime; 
b) The spacetime is globally hyperbolic; 

c) Null convergence condition   holds; 

Then 
• The spacetime is geodesically incomplete.

RabKaKb ≥ 0

Penrose singularity (incompleteness) theorem  

Classifying non-singular black holes corresponds to classify how to avoid the theorem

We consider spacetimes where a trapping surface is formed and 
a) Pseudo-Riemannian geometry provides an adequate description of spacetime; 
b) The spacetime is global hyperbolic; 
c) The spacetime is geodesically complete; 

d) There are no curvature singularities.

Minimal condition to have a well defined initial value problem 



By studying the possible ways out of Penrose theorem we can classify non-
singular geometries 

➢Regular black holes. Both outer and inner horizon; 

➢Wormholes. Local or global minimum radius surface, with or without 
outer horizon; 

➢Asymptotic regular black holes or wormholes. Inner horizon or minimum 
radius are pushed at infinite affine distance; 

➢Ultracompact horizonless objects. Surface close to the would be horizon.

Singularity avoidance: possibilities



Viability and self-consistency 
Regular black holes instability
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Let us start studying a static configuration, the analysis will 
trivially extend to the dynamical case. 

ds2 = − e−2ϕ(r)F(r)dv2 + 2e−ϕ(r)dvdr + r2dΩ2

The horizon condition is  . 

•  
       

•  

There is an even number of horizons 

F(r) = 0
lim
r−>0

F(r) = 1

lim
r−>∞

F(r) = 1

The surface gravity:

  κ± = 1
2 e−ϕ(r±) dF

dr
r=r±

⟹ κ− < 0 , κ+ > 0 .

Regular black holes



Bardeen regular black hole 

F = 1 − 2Mr2

(r2 + l2)3/2 ϕ = 0

Hayward regular black hole 

F = 1 − 2Mr2

r3 + 2Ml2 ϕ = 0

ds2 = − e−2ϕ(r)F(r)dv2 + 2e−ϕ(r)dvdr + r2dΩ2 F(r) = 1 − 2m(r)
r

Dymnikova regular black hole 

F = 1 − 2Mr2 (1 − e−r3/2Ml2) ϕ = 0

Examples of regular black holes



The causal structure is equivalent to the one of a Reissner-Nördstrom 
black hole 

It is well known that the inner horizon is unstable [Poisson, Israel; Ori]. 

Small perturbations produce a null or spacelike singularity.  

This is actually a welcome feature in this case as 
it saves the strong cosmic censorship conjecture 

SCC: the classical fate of all observers should be  
          predictable from the initial data 
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Reissner–Nordström Black Hole  



We want to study the stability of the inner horizon.  

Problem: 
We do not know the field equations. 

Solution: 
Consider a geometrical approach with few assumptions 

What are these assumptions? What are the limitations of the approach? 

Mass Inflation



Let us now add some perturbation to the regular black hole background 

Consider an ingoing and an outgoing null shell colliding to form two new null shells; 

Is this a reasonable type of perturbation? 

On purely geometrical ground 
[C. Barrabes, W. Israel, E. Poisson Phys. Rev. D 41 (1990)] 

 
With 

 

It follows 

 

Where 

)&&
* (&0))&&

+ (&0) = )&&
, (&0))&&

- (&0)

grr = F(r) = 1 − 2m(r)
r

mA(r0) = mB(r0) + min(r0) + mout(r0) − 2min(r0)mout(r0)
r0FB(r0)

min(r0) := mC(r0) − mB(r0) , mout(r0) := mD(r0) − mB(r0) .

Yes, close to the inner horizon

Double null shell



What are  and  ? We assume that the 
energy of each shell shifts the asymptotic mass.

 ,       . 

Price law: 
[Price 1972; Gundlach, Price, Pullin 1994; Dafermos, Rodnianski 2005] 

 

Behavior of : 

 

Putting these two together  

min mout

mout ≈ ∂m
∂M

r=r−

Mout min ≈ ∂m
∂M

r=r−

Min(v)

Min ∝ v−p

.+(&0)
FB ∝ e−|κ−|v

mA ∝ v−pe|κ−|v

A small perturbation has a huge backreaction on the geometry.

Double null shell



The background geometry is replaced by a continuous flux of energy described 
by the Vaidya spacetime [Ori 1991]. 

The shell divides the spacetime into two regions 

For a pressureless shell, we can obtain 

 .

The (late time) behavior of  is fixed by the Price law 

With this information we obtain 

1
f2

∂m2
∂v

= 1
f1

∂m1
∂v

M1(v)

M1(v) = M0 − β
vp .

dm2
dv

= ( |κ− | − p + 1
v ) (m2 − r−

2 ) + dR
dv

∂M2
∂r

ds2 = − F(v, r)dv2 + 2dv dr + r2dΩ2 F(v, r) = 1 − 2m(v, r)
r

ℛ1

ℛ2

Modified Ori model



Bardeen:

F1,2 = 1 −
2M1,2r2

(r2 + l2)3/2

Numerical results

Parameters: β = 1, p = 12, M0 := M1(v = 1) = 10, l = 1, R(v = 1) = 5, M2(v = 1) = M0 + 1.

A small perturbation has a huge backreaction on the geometry.

m2
m2

Hayward:

F1,2 = 1 −
2M1,2r2

r3 + 2M1,2l2



  Dynamical regular black holes

We only discussed the static case. 

For the eternal geometry, the inner horizon is 
also a Cauchy horizon. 

The causal structure of a dynamical regular 
black hole is very different. 

However, we should reproduce the same 
result if there is the geometry varies on a 
timescale much longer than the instability 
timescale.



  Dynamical regular black holes

Work in preparation arXiv:23xx.xxxxx
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The instability grows similarly to the eternal case until the shell escapes the trapped region



Viability and self-consistency 
Horizonless ultracompact objects instability



Inner light-ring instability 
A horizonless space-time must have a second light ring  
[Cunha et al. 2017]; 

The inner light ring corresponds to a minimum of the 
effective potential; 

For some boson stars models this leads to a non-linear 
instability [Cunha et al. 2022]; 

It seems that as soon as we get rid of the inner horizon 
instability, we get another source of instability. 

Does this mean that there is no stable alternative to BH? 

ds2 = − (1 − 2Mr2

r3 + 2Ml2 ) dv2 + 2dvdr + r2dΩ2

l /M
R. Carballo Rubio, F. D. F. , S. Liberati, M. Visser. arXiv:2211.05817  



Addressing the viability issues?
  

R. Carballo Rubio, F. Di Filippo, S. Liberati, C. Pacilio, M. Visser. Regular black holes without mass inflation instability.  
JHEP 09 (2022) 118. arXiv:2205.13556. 



Inner extremal regular black holes 
The instability is driven by the surface gravity at the inner horizon.   

Is it possible to tame the instability by building an “inner extremal” regular black hole with  and ? 

   

M ∝ e|κ−|v

κ− = 0 κ+ ≠ 0

κ± = 1
2 e−ϕ(r±) dF

dr
r=r±

.

r

F(r)

It is easy to construct such geometry

,  
with  

 .

ds2 = − F(r)dv2 + 2dvdr + r2dΩ2

F = (r − r−)3(r − r+)

(r − r−)3(r − r+) + 2Mr3 + (a2 − 3r− (r+ + r−))



We still obtain 

 

However, 
             . 

And 
. 

Leading to 

mA(r0) = mB(r0) + min(r0) + mout(r0) − 2min(r0)mout(r0)
r0FB(r0)

min ∝ v−1Min(v) mout ∝ v−1Mout

FB ∝ v−3/2

Double null shells

mA(r0) = mB(r0) + h(M )Minv−1 + h(M )Moutv−1 − h̃(M )v−1/2 .

A small perturbation causes a small effect!



Modified Ori model

ℛ1

ℛ2

No traces of instability!

F = (r − r−)(r − kr−)2(r − r+)

(r − r−)3(r − r+) + 2Mr3 + (a2 − 3r− (r+ + r−))

We can also repeat the numerical analysis for the Ori model.



Are inner extremal black holes reasonable or fine tuned?

Quick answer:

I don’t know!



Are inner extremal black holes reasonable or fine tuned?
It is interesting to note the existence of a (classically) stable regular black hole geometry. 

At this stage, there is no motivation to consider this metric. 

Regular black holes arise in several quantum gravity-inspired toy models, always with . 

Can we make sense of an inner extremal regular black hole? 

What is the backreaction of the mass inflation instability?  

• In GR, this usually leads to a singularity. 

• Alternatively: 

- The inner horizon expands (might be good for observations); 

- The value of the surface gravity decreases (might provide a conservative resolution to 

the singularity problem).

κ− ≠ 0



Inner light ring instability 
The presence of an inner light ring is universal. 

The mechanism linking the stable light ring to the piling up of perturbation is also universal. 

Is the instability universal? Can we build a stable ultra-compact object? 

Boson stars solutions only exist up to a maximum mass. 

Energy piling up at the minimum of the effective potential must lead to an instability. 

What about objects supported by semiclassical effects? 

 Rab − 1
2 gabR = 8πG

c4 < ̂Tab >



- Black holes hide theoretical evidence of the failure of general relativity. 

- It is possible to classify any non-singular black hole spacetime with only a few classes. 

- Regular black holes and ultracompact objects seem to be unstable. 

- However, these geometries are generically unstable under small perturbations. 

- Stable regular black hole geometries exist. Can we form them? 

- Alternatively, does mass inflation lead to deviations at scales larger than Planck scale? 

- Can we construct a stable ultracompact object?  

- Yet a lot to discover about the dynamical formation mechanism. 

Still work to do to obtain a viable alternative to black holes (at least for the classes discussed in this talk). 
This might not be a negative feature!

Final remarks



Thank you!


