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Spin foams can lead to a gravitational dynamics in the continuum limit.

Rest of the talk: application to cosmology by symmetry reduction 
with focus on Lorentzian features.
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Spin foams are proper
quantum mechanical path 
integrals. 

For Euclidean geometries.

For Lorentzian geometries.

Z ∼ ∫ 𝒟geom exp(iS(geom))

Lorentzian path integral

Light cone structure

How to compute it?

Consider Regge calculus.

In Regge calculus. (Integral)

In Spin Foams. (Sum)
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           ?? Who ordered these configurations ??

           ?? What do we do with these configurations ??



Are these just annoying discretization artifacts?
No.  They can actually be useful.

• Imaginary metrics / imaginary terms in the action also appear in the continuum, e.g. for topology change. 

• Light cone irregularities (co-dimension 2 conical singularities) introduced by hand in Lorentizan continuum path integral

• This talk:  Important to get entropy for de Sitter space

• This talk:  Branch cut choice makes a more subtle choice in the continuum more obvious

[Louko, Sorkin 1995, ….,   Witten 2022, …]

[Marolf 2022]

[BD, Jacobson, Padua-Arguelles  TO APPEAR]



Discretized de Sitter
One time evolution step in de Sitter

a2
a

N N

N
91

&
a

With symmetry reduction: 

one integration variable ~ lapse

[BD, Gielen, Schander]



Discretized de Sitter
One time evolution step in de Sitter

a2
a

N N

N
91

&
a

With symmetry reduction: 

one integration variable ~ lapse

Compactified  Lorentzian de Sitter

a2
a

N N

N
91

&
a

[BD, Gielen, Schander]

With symmetry reduction:

Two integration variables ~ lapse, equator

[Continuum:

Banihashemi, Jacobson]

Aim: Entropy from Lorentzian 

Path integral.



Discretized de Sitter
One time evolution step in de Sitter

a2
a

N N

N
91

&
a

With symmetry reduction: 

one integration variable ~ lapse

Compactified  Lorentzian de Sitter

a2
a

N N

N
91

&
a

[BD, Gielen, Schander]

With symmetry reduction:

Two integration variables ~ lapse, equator

[Continuum:

Banihashemi, Jacobson]

a2
a

N N

N
91

&
a

2

exp.

2 decay

my
deform

A

Sexp.decay

- 2i
- 1 O i 2+arg(N2

Y
Meg - pos .

lapse lapse
1

1 1

1

3

~

:
3

I
->i - i z'i

a2
a

N N

N
91

&
a

2

exp.

2 decay

my
deform

A

Sexp.decay

- 2i
- 1 O i 2+arg(N2

Y
Meg - pos .

lapse lapse
1

1 1

1

3

~

:
3

I
->i - i z'i

a2
a

N N

N
91

&
a

2

exp.

2 decay

my
deform

A

Sexp.decay

- 2i
- 1 O i 2+arg(N2

Y
Meg - pos .

lapse lapse
1

1 1

1

3

~

:
3

I
->i - i z'i

Aim: Entropy from Lorentzian 

Path integral.



a2
a

N N

N
91

&
a

2

exp.

2 SUPPr

my
deform

·exp .surpr
-

-2π - O i 2+arg(N2

Y

exp .

- 1

1 enhan ↑ I-error
1 1

exp.

3 euhanced 3
2 - I i z'i->

Discretized de Sitter - two choices
One time evolution step in de Sitter

[Continuum-Mini-Super-Space:

Feldbrugge, Lehners, Turok ]



a2
a

N N

N
91

&
a

2

exp.

2 SUPPr

my
deform

·exp .surpr
-

-2π - O i 2+arg(N2

Y

exp .

- 1

1 enhan ↑ I-error
1 1

exp.

3 euhanced 3
2 - I i z'i->

Discretized de Sitter - two choices
One time evolution step in de Sitter

[Continuum-Mini-Super-Space:

Feldbrugge, Lehners, Turok ]
22

0.5 1.0 1.5

10-5

10-4

0.001

0.010

0.100

1

Z1, Z
0
Continuum

sl

In solid: the logarithmic graphic of the thimble
contribution to ZBall, i.e. Z1. When including the

causally irregular region, this is the only contribution.
Note that it is is real. In gray-dashed: the logarithmic

graphic of Z0
Continuum.

Z2

Contribution to ZBall from the arc around the irregular
region, as a function of sl. The real part is solid and the

imaginary part dashed.

sl

|Z1|, |Z2|

Logarithmic plot of the absolute values of the two contributions in (4.19) as functions of sl. The thimble contribution is
shown in black and the arc’s in gray.

FIG. 8: Path integral numerical results for the ball model. For these plots we have set ⇤̃ = 10. The red-dashed
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where the spatial curvature k = 1, a1 is the ‘final’ scale factor, the ‘no-boundary boundary condition’ a0 = 0 has
already been applied and N = Na is the lapse multiplied by the scale factor.

For a1 below a critical value a
crit
1 (⇤) (analogue to s

crit
l ) S0 has four critical points [23], two for each branch of

Euclidean data, corresponding to the two pairs of saddles mentioned in IVA. However, as explained there, the
triangulation used only captures one critical point (for a given branch of Euclidean data). Therefore, in order to
benchmark we modify S0 so that it also has only one critical point. The way we do so is by neglecting the N 3 term,
which also results in a behaviour better resembled by that of Wa in both the Lorentzian and Euclidean branches.
That is, we will consider
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Need irregular configurations to agree with continuum result.
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where the spatial curvature k = 1, a1 is the ‘final’ scale factor, the ‘no-boundary boundary condition’ a0 = 0 has
already been applied and N = Na is the lapse multiplied by the scale factor.

For a1 below a critical value a
crit
1 (⇤) (analogue to s

crit
l ) S0 has four critical points [23], two for each branch of

Euclidean data, corresponding to the two pairs of saddles mentioned in IVA. However, as explained there, the
triangulation used only captures one critical point (for a given branch of Euclidean data). Therefore, in order to
benchmark we modify S0 so that it also has only one critical point. The way we do so is by neglecting the N 3 term,
which also results in a behaviour better resembled by that of Wa in both the Lorentzian and Euclidean branches.
That is, we will consider
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already been applied and N = Na is the lapse multiplied by the scale factor.
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triangulation used only captures one critical point (for a given branch of Euclidean data). Therefore, in order to
benchmark we modify S0 so that it also has only one critical point. The way we do so is by neglecting the N 3 term,
which also results in a behaviour better resembled by that of Wa in both the Lorentzian and Euclidean branches.
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Ñ
3

4
ã
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p
⇤̃ and Ñ = N ⇤̃.
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Is their a similar choice in the continuum? 

    Yes, in choosing how to circumvent the N=0 singularity.
[Continuum-Mini-Super-Space:

  Diaz-Dorronsoro, Halliwell, Hartle, Hertog, Janssen]
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where the spatial curvature k = 1, a1 is the ‘final’ scale factor, the ‘no-boundary boundary condition’ a0 = 0 has
already been applied and N = Na is the lapse multiplied by the scale factor.
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Euclidean data, corresponding to the two pairs of saddles mentioned in IVA. However, as explained there, the
triangulation used only captures one critical point (for a given branch of Euclidean data). Therefore, in order to
benchmark we modify S0 so that it also has only one critical point. The way we do so is by neglecting the N 3 term,
which also results in a behaviour better resembled by that of Wa in both the Lorentzian and Euclidean branches.
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Lifschetz thimble.

Need irregular configurations to agree with continuum result.
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Lorentzian path integral can give exp. enhancement.

Is their a similar choice in the continuum? 

    Yes, in choosing how to circumvent the N=0 singularity.
[Continuum-Mini-Super-Space:

  Diaz-Dorronsoro, Halliwell, Hartle, Hertog, Janssen]

Irregular light cone structures have an important role. 
Surprise: important for entropy calculation. 
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 Effective
spin foam 
Expectation values:

9

FIG. 1: The plot on the left panel shows the partial sums over time-like areas with cut-o↵ NB for the ball model. We sum all nB with
nB  NB . (The parameters for the spin foam sum area ⇤ = 0.2`�2

P and
p

Abdry ⇡ 0.033`2P .) On the right panel we show the series
resulting from applying Wynn’s epsilon algorithm (which will be explained in the main text) to the series defined by the first 100 partial
sums shown on the left. The resulting series has a highly accelerated convergence. The maximal relative error (defined in (3.9)) is of the

order of 10�11.

convergence of slowly converging series, and can also be used to define limit values to divergent series. We will see
that these limit values lead to physically reasonable results: e.g. for the computation of expectation values we rely on
such limit values, and in most cases the expectation values we compute will approximate well the classical solutions.
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FIG. 2: The plot on the left panel shows the partial sums over time-like areas for the computation of the expectation values. That is
compared to the sums shown in Fig. 2 we insert a term proportional to n2

B . As before we sum over all positive values nB  NB . The
right panel shows Wynn’s epsilon algorithm applied to the series defined by the first 100 partial sums. This series shows quite a fast

convergence. Note that the (anti-) limit is a very small number, which we found is typical for the computation of the expectation values
in the ball model. The maximal relative error (defined in (3.9)) is of the order of 10�8.

The non-linear sequence transformations can be applied to compute the limit of sums or integrals with infinite
summation or integration range, respectively. To treat sums we form a series from the partial sums Sk, k = 0, 1, . . .

Sk =

Cmin+kCstepX

n=1

f(n) . (3.1)

Here one can choose an arbitrary minimal cut-o↵ Cmin for the sum, so that S0 represent the sum of Cmin terms. Cstep

is the step size for probing the partial sums. We found that choosing Cstep = 1 leads often to the best results.
For the application to integrals we define

Sk =

Z Cmin+k⇥Cstep

x0

f(x) dx . (3.2)

Cstep should be chosen such that the Sk probes the (largest frequency) oscillations of the integral S(y) =
R y
x0

f(x)dx,
i.e. there should be several Sk for each period.

Rel. Error~10−8

Works very well for sums with actions that are at most linear in the summation variable.  
               Consistent with quantum mechanics (Bohr quantization) and spin foams.
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FIG. 1: Representation of a no-boundary saddle point for the path integral: the geometry starts o↵ as a

Riemannian 4-sphere which is then glued to one half of de Sitter spacetime.

If we again work in the particularly convenient gauge N = N/a where N is a constant, the first

order Friedmann equation in (2.15) is

ȧ
2

N2
=

⇤

3
�

1

a2
. (2.20)

The two possible solutions (corresponding to the two possible signs for ȧ) starting from a given

a(0) are

a(t) =

vuut
a(0)2 +

1

3
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⇤Nt + 6�1

r
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3
a(0)2 � 1

!
(2.21)

where �1 = ±1. One can now eliminate N in favour of the final boundary value a(1); this yields

a(t) =

vuut
a(0)2(t � 1)2 + a(1)2t2 �

6

⇤
t(t � 1)

 
1 + �1�2

r
⇤

3
a(0)2 � 1

r
⇤

3
a(1)2 � 1
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where �2 is another sign that can be chosen freely, coming from the ambiguity in eliminating N

in favour of a(1). Evaluating the action (2.13) on this solution again leads to (2.19), with the two

signs �1 and �2 free as before.

Below we will compare these continuum results for the stationary phase approximation to those

obtained in the discrete setting of Regge calculus. The sign ambiguities in (2.19) will also be

important in the discussion there, so a few more comments regarding their interpretation might

be useful. First of all, note that if one chooses either a(0) = a⇤ or a(1) = a⇤, there is only a

single global sign to choose. Furthermore, the Hamilton–Jacobi function is, for any choice of signs,

purely imaginary if a(0)  a⇤ and a(1)  a⇤ (so that all classical solutions are Euclidean) and real

if a(0) � a⇤ and a(1) � a⇤ (so that all classical solutions are Lorentzian). For the remaining case

where a(0)  a⇤ and a(1) � a⇤, which is considered in the no-boundary proposal, the two sign

ambiguities amount to a choice of sign for the imaginary part (resulting from evolution from a(0)

to a⇤) and the sign for the real part (resulting from evolution from a⇤ to a(1)), respectively.

Quantum deSitter

[BD, Padua-Arguelles 2023]Effective spin foams for de Sitter
Due to symmetry reduction only difference between Regge path integral and effective spin foams:  integral vs sum.

What is the effect of the discrete area spectrum?
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FIG. 6: The left panel shows the real part of the expectation value of the (signed) squared bulk area B2 ⌘ Ablk for the spin foam sum
and the classical solution. There are no visible di↵erences. The right panel shows the imaginary part of the expectation value – the

imaginary part of the classical solution is vanishing. Here we expressed B2 in units of `4P (also in the following figures).
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FIG. 7: Here we zoom into a smaller region of the plot shown on the left panel in Fig. 6. The left panel shows the expectation value for
smaller values of the scale factor squares for the outer boundary a22 (or smaller di↵erences (a2 � a1)2) and the right panel for larger

di↵erences. In the latter case we do observe very small oscillations of the expectation value around the classical value.

For the second example we choose ⇤ = 2`�2
P . Note that this value is 10 times the value of the cosmological constant

in the first example. We choose the boundary areas (or squared scale factors) to be 1/10 the values in the first
example. The actions in the first and second example are then connected by the following scaling behaviour
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This scaling behaviour lets us expect the same number of (bulk area) spectral values per oscillation of the amplitude
for examples that are connected by scaling. Indeed Fig. 8 shows that the saddle point is still very well recognizable
in this second example, although we show only 1/10 of the spectral values for the bulk area as compared to the first
example.

Fig. 9 compares the absolute value of the Regge and e↵ective spin foam partition function, and we again see that
these approximate each other very well. The real parts of the partition functions di↵er by a small shift.

We depict the expectation values in Fig 10 and Fig 11. As expected, the real part of the expectation values are
connected by the scaling behaviour (4.1). This extends to the size of the imaginary part.

However, zooming in, see Fig 11, we find that the di↵erences between the expectation value and the classical value
appear (in their relative size) to be somewhat larger than in the first example, shown in Fig 7.

We choose the third and last example to showcase an example with larger di↵erences between the Regge and e↵ective
spin foam path integral. We found that these di↵erences are enhanced for large values of the cosmological constant, and
therefore choose ⇤ = 100`2P . The boundary values are chosen as A1 = 0.2`2P (a21 ⇡ 1.1`2P ) and A2 = 0.22`2P , . . . , 0.4`

2
P

(a1 = 1.2`2P , . . . , 2.1).
Fig. 12 shows the amplitude as a function of the continoues bulk variable and as a function of the discrete bulk

variable. There is a classical saddle point at jB ⇡ 30, this classical saddle point is however not visible in the discrete

Lorentzian regime transition: very small quantum effects. 
Almost no difference between Regge and spin foam.

Effective spin foams for de Sitter
Due to symmetry reduction only difference between Regge path integral and effective spin foams:  integral vs sum.

What is the effect of the discrete area spectrum?
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P . Note that this value is 10 times the value of the cosmological constant

in the first example. We choose the boundary areas (or squared scale factors) to be 1/10 the values in the first
example. The actions in the first and second example are then connected by the following scaling behaviour
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This scaling behaviour lets us expect the same number of (bulk area) spectral values per oscillation of the amplitude
for examples that are connected by scaling. Indeed Fig. 8 shows that the saddle point is still very well recognizable
in this second example, although we show only 1/10 of the spectral values for the bulk area as compared to the first
example.

Fig. 9 compares the absolute value of the Regge and e↵ective spin foam partition function, and we again see that
these approximate each other very well. The real parts of the partition functions di↵er by a small shift.

We depict the expectation values in Fig 10 and Fig 11. As expected, the real part of the expectation values are
connected by the scaling behaviour (4.1). This extends to the size of the imaginary part.

However, zooming in, see Fig 11, we find that the di↵erences between the expectation value and the classical value
appear (in their relative size) to be somewhat larger than in the first example, shown in Fig 7.

We choose the third and last example to showcase an example with larger di↵erences between the Regge and e↵ective
spin foam path integral. We found that these di↵erences are enhanced for large values of the cosmological constant, and
therefore choose ⇤ = 100`2P . The boundary values are chosen as A1 = 0.2`2P (a21 ⇡ 1.1`2P ) and A2 = 0.22`2P , . . . , 0.4`

2
P

(a1 = 1.2`2P , . . . , 2.1).
Fig. 12 shows the amplitude as a function of the continoues bulk variable and as a function of the discrete bulk

variable. There is a classical saddle point at jB ⇡ 30, this classical saddle point is however not visible in the discrete

Lorentzian regime transition: very small quantum effects. 
Almost no difference between Regge and spin foam.
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FIG. 17: Here we show the amplitude for a smaller value (left panel) and a larger value (right panel) of the boundary area A as
function of the discrete (time like) summation variable nB . We see that for larger boundary areas (equivalent to having larger di↵erences

between the outer and inner boundary, as the area for the inner boundary is vanishing) the discretization does not capture fully the
oscillations of the amplitude over a larger range of the summation variable nB . One can therefore expect that the di↵erence between

Regge integral and spin foam sum is larger for larger outer areas.
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FIG. 18: Here we show the absolute value (with a logarithmic plot on the left panel) and the imaginary part (right panel) of the
partition functions for the ball model. We compare the Regge integral (red) with the e↵ective spin foam sum (blue), with spectral values
as described in (2.8), and the e↵ective spin foam sum (purple), where we refine the spectrum by a factor of 10. We see that the e↵ective
spin foam sum does deviate from the Regge path integral for quite small values of the squared scale factor. That is the discretization (via
the discrete spectra) of the integration variable does interfere with the subtle mechanism that leads to destructive interference and an
exponential decay of the partition function. Refining the spectrum increases the range for the scale factor, in which the spin foam sum
does approximate the Regge integral reasonable well. The imaginary part of the Regge integral does vanish, for the spin foam sums one

does find a non-vanishing imaginary part.

expectation value as well as to the classical15 value.
We again see that the e↵ective spin foam value deviates from the Regge integral value starting with quite small

boundary areas. Refining the spectrum (by a factor of 10), we can push the regime where we get agreement between
spin foam and Regge result to larger boundary areas. We also find a deviation between the Regge result and the
classical value, but they show the same qualitative behaviour.

For the second example we will choose ⇤ = 2`�2
P . We choose the same range of boundary values for the area as

before. Due to having a cosmological constant value which is 10 times the size of the value in the first example,
this range now covers 10 percent (and not only 1 percent) of the regime in which we approximate well continuum
behaviour with the Regge path integral.

We noticed that the results for ⇤ = 2`�2
P look very similar to the results for ⇤ = 0.2`�2

P (for the same range
of boundary areas). That is for these ranges of boundary areas the value of the cosmological constant has a weak

15 There is no classical solution, but we do have a saddle point along Euclidean data. We refer to the position of this saddle point as
“classical value”.

Euclidean regime transition:
 Significant differences between Regge and spin foams. 

Effective spin foams for de Sitter
Due to symmetry reduction only difference between Regge path integral and effective spin foams:  integral vs sum.

What is the effect of the discrete area spectrum?
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FIG. 1: Representation of a no-boundary saddle point for the path integral: the geometry starts o↵ as a

Riemannian 4-sphere which is then glued to one half of de Sitter spacetime.

If we again work in the particularly convenient gauge N = N/a where N is a constant, the first

order Friedmann equation in (2.15) is

ȧ
2

N2
=

⇤

3
�

1

a2
. (2.20)

The two possible solutions (corresponding to the two possible signs for ȧ) starting from a given

a(0) are

a(t) =

vuut
a(0)2 +

1

3
Nt

 
⇤Nt + 6�1

r
⇤

3
a(0)2 � 1

!
(2.21)

where �1 = ±1. One can now eliminate N in favour of the final boundary value a(1); this yields

a(t) =

vuut
a(0)2(t � 1)2 + a(1)2t2 �

6

⇤
t(t � 1)

 
1 + �1�2

r
⇤

3
a(0)2 � 1

r
⇤

3
a(1)2 � 1

!
(2.22)

where �2 is another sign that can be chosen freely, coming from the ambiguity in eliminating N

in favour of a(1). Evaluating the action (2.13) on this solution again leads to (2.19), with the two

signs �1 and �2 free as before.

Below we will compare these continuum results for the stationary phase approximation to those

obtained in the discrete setting of Regge calculus. The sign ambiguities in (2.19) will also be

important in the discussion there, so a few more comments regarding their interpretation might

be useful. First of all, note that if one chooses either a(0) = a⇤ or a(1) = a⇤, there is only a

single global sign to choose. Furthermore, the Hamilton–Jacobi function is, for any choice of signs,

purely imaginary if a(0)  a⇤ and a(1)  a⇤ (so that all classical solutions are Euclidean) and real

if a(0) � a⇤ and a(1) � a⇤ (so that all classical solutions are Lorentzian). For the remaining case

where a(0)  a⇤ and a(1) � a⇤, which is considered in the no-boundary proposal, the two sign

ambiguities amount to a choice of sign for the imaginary part (resulting from evolution from a(0)

to a⇤) and the sign for the real part (resulting from evolution from a⇤ to a(1)), respectively.

Quantum deSitter

[BD, Padua-Arguelles 2023]
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FIG. 6: The left panel shows the real part of the expectation value of the (signed) squared bulk area B2 ⌘ Ablk for the spin foam sum
and the classical solution. There are no visible di↵erences. The right panel shows the imaginary part of the expectation value – the

imaginary part of the classical solution is vanishing. Here we expressed B2 in units of `4P (also in the following figures).
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FIG. 7: Here we zoom into a smaller region of the plot shown on the left panel in Fig. 6. The left panel shows the expectation value for
smaller values of the scale factor squares for the outer boundary a22 (or smaller di↵erences (a2 � a1)2) and the right panel for larger

di↵erences. In the latter case we do observe very small oscillations of the expectation value around the classical value.

For the second example we choose ⇤ = 2`�2
P . Note that this value is 10 times the value of the cosmological constant

in the first example. We choose the boundary areas (or squared scale factors) to be 1/10 the values in the first
example. The actions in the first and second example are then connected by the following scaling behaviour
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This scaling behaviour lets us expect the same number of (bulk area) spectral values per oscillation of the amplitude
for examples that are connected by scaling. Indeed Fig. 8 shows that the saddle point is still very well recognizable
in this second example, although we show only 1/10 of the spectral values for the bulk area as compared to the first
example.

Fig. 9 compares the absolute value of the Regge and e↵ective spin foam partition function, and we again see that
these approximate each other very well. The real parts of the partition functions di↵er by a small shift.

We depict the expectation values in Fig 10 and Fig 11. As expected, the real part of the expectation values are
connected by the scaling behaviour (4.1). This extends to the size of the imaginary part.

However, zooming in, see Fig 11, we find that the di↵erences between the expectation value and the classical value
appear (in their relative size) to be somewhat larger than in the first example, shown in Fig 7.

We choose the third and last example to showcase an example with larger di↵erences between the Regge and e↵ective
spin foam path integral. We found that these di↵erences are enhanced for large values of the cosmological constant, and
therefore choose ⇤ = 100`2P . The boundary values are chosen as A1 = 0.2`2P (a21 ⇡ 1.1`2P ) and A2 = 0.22`2P , . . . , 0.4`

2
P

(a1 = 1.2`2P , . . . , 2.1).
Fig. 12 shows the amplitude as a function of the continoues bulk variable and as a function of the discrete bulk

variable. There is a classical saddle point at jB ⇡ 30, this classical saddle point is however not visible in the discrete

Lorentzian regime transition: very small quantum effects. 
Almost no difference between Regge and spin foam.

20

⇤ = 0.2`�2
P , A = �

nt
`2P ⇤ = 0.2`�2

P , A = 300 �
nt

`2P

FIG. 17: Here we show the amplitude for a smaller value (left panel) and a larger value (right panel) of the boundary area A as
function of the discrete (time like) summation variable nB . We see that for larger boundary areas (equivalent to having larger di↵erences

between the outer and inner boundary, as the area for the inner boundary is vanishing) the discretization does not capture fully the
oscillations of the amplitude over a larger range of the summation variable nB . One can therefore expect that the di↵erence between

Regge integral and spin foam sum is larger for larger outer areas.
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FIG. 18: Here we show the absolute value (with a logarithmic plot on the left panel) and the imaginary part (right panel) of the
partition functions for the ball model. We compare the Regge integral (red) with the e↵ective spin foam sum (blue), with spectral values
as described in (2.8), and the e↵ective spin foam sum (purple), where we refine the spectrum by a factor of 10. We see that the e↵ective
spin foam sum does deviate from the Regge path integral for quite small values of the squared scale factor. That is the discretization (via
the discrete spectra) of the integration variable does interfere with the subtle mechanism that leads to destructive interference and an
exponential decay of the partition function. Refining the spectrum increases the range for the scale factor, in which the spin foam sum
does approximate the Regge integral reasonable well. The imaginary part of the Regge integral does vanish, for the spin foam sums one

does find a non-vanishing imaginary part.

expectation value as well as to the classical15 value.
We again see that the e↵ective spin foam value deviates from the Regge integral value starting with quite small

boundary areas. Refining the spectrum (by a factor of 10), we can push the regime where we get agreement between
spin foam and Regge result to larger boundary areas. We also find a deviation between the Regge result and the
classical value, but they show the same qualitative behaviour.

For the second example we will choose ⇤ = 2`�2
P . We choose the same range of boundary values for the area as

before. Due to having a cosmological constant value which is 10 times the size of the value in the first example,
this range now covers 10 percent (and not only 1 percent) of the regime in which we approximate well continuum
behaviour with the Regge path integral.

We noticed that the results for ⇤ = 2`�2
P look very similar to the results for ⇤ = 0.2`�2

P (for the same range
of boundary areas). That is for these ranges of boundary areas the value of the cosmological constant has a weak

15 There is no classical solution, but we do have a saddle point along Euclidean data. We refer to the position of this saddle point as
“classical value”.

Euclidean regime transition:
 Significant differences between Regge and spin foams. 

Effective spin foams for de Sitter
Due to symmetry reduction only difference between Regge path integral and effective spin foams:  integral vs sum.

What is the effect of the discrete area spectrum?
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Discrete spectra:  Make tunnelling amplitudes less suppressed. 

Should be confirmed by using more time steps.



Summary
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Summary
• Continuum limit of spin foams can lead to general relativity. 

• Effective action from spin foams:  Weyl curvature squared term from quantum extension of configuration space to area metrics

• Ghost free

• Lorentzian simplicial path integral: configurations with light cone irregularities 

• Lead to branch cuts and imaginary terms in the action:  suppressed or enhanced quantum amplitudes 

• Important role for thermodynamic interpretation 
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• Effective spin foam path integral for de Sitter 

• Appears in the continuum in a much more subtle way 

• Shank transform to deal with sums (and integrals) 

• Weakening of decay of no-boundary probability amplitude 
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FIG. 17: Here we show the amplitude for a smaller value (left panel) and a larger value (right panel) of the boundary area A as
function of the discrete (time like) summation variable nB . We see that for larger boundary areas (equivalent to having larger di↵erences

between the outer and inner boundary, as the area for the inner boundary is vanishing) the discretization does not capture fully the
oscillations of the amplitude over a larger range of the summation variable nB . One can therefore expect that the di↵erence between

Regge integral and spin foam sum is larger for larger outer areas.
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FIG. 18: Here we show the absolute value (with a logarithmic plot on the left panel) and the imaginary part (right panel) of the
partition functions for the ball model. We compare the Regge integral (red) with the e↵ective spin foam sum (blue), with spectral values
as described in (2.8), and the e↵ective spin foam sum (purple), where we refine the spectrum by a factor of 10. We see that the e↵ective
spin foam sum does deviate from the Regge path integral for quite small values of the squared scale factor. That is the discretization (via
the discrete spectra) of the integration variable does interfere with the subtle mechanism that leads to destructive interference and an
exponential decay of the partition function. Refining the spectrum increases the range for the scale factor, in which the spin foam sum
does approximate the Regge integral reasonable well. The imaginary part of the Regge integral does vanish, for the spin foam sums one

does find a non-vanishing imaginary part.

expectation value as well as to the classical15 value.
We again see that the e↵ective spin foam value deviates from the Regge integral value starting with quite small

boundary areas. Refining the spectrum (by a factor of 10), we can push the regime where we get agreement between
spin foam and Regge result to larger boundary areas. We also find a deviation between the Regge result and the
classical value, but they show the same qualitative behaviour.

For the second example we will choose ⇤ = 2`�2
P . We choose the same range of boundary values for the area as

before. Due to having a cosmological constant value which is 10 times the size of the value in the first example,
this range now covers 10 percent (and not only 1 percent) of the regime in which we approximate well continuum
behaviour with the Regge path integral.

We noticed that the results for ⇤ = 2`�2
P look very similar to the results for ⇤ = 0.2`�2

P (for the same range
of boundary areas). That is for these ranges of boundary areas the value of the cosmological constant has a weak

15 There is no classical solution, but we do have a saddle point along Euclidean data. We refer to the position of this saddle point as
“classical value”.



Lots of things to understand! 

Lorentzian path integral
Spin foams, simplicial Regge, continuum, CDT, causal sets, …

Computational challenges … 

Intriguing conceptual questions.


