The simplicial Lorentzian path integral

Bianca Dittrich, Perimeter Institute

Puzzles in the Quantum Gravity Landscape, Oct 2023 Perimeter Institute

Outlook

-(Effective) Spin foams
-Light cone structure in Lorentzian simplicial path integrals (for cosmology)
-Effective Spin foams for cosmology

Spin foams

Loop quantum gravity:

Rigorous background independent notion of quantum geometry. Closely related to TQFTs with defects.
[Ashtekar, Isham, Lewandowski, Rovelli, Smolin, ..., BD, Geiller, ...]

Areas have a discrete spectrum.
[Rovelli, Smolin, ...]

Spin foams

Loop quantum gravity:

Rigorous background independent notion of quantum geometry. Closely related to TQFTs with defects.
[Ashtekar, Isham, Lewandowski, Rovelli, Smolin, ..., BD, Geiller, ...]

Areas have a discrete spectrum.

[Rovelli, Smolin, ...]

Quant. extension of length metric space to area metrics.
Forced by discrete area spectrum. [Asante, BD, Haggard]

Spin foams

Loop quantum gravity:

Rigorous background independent notion of quantum geometry. Closely related to TQFTs with defects.
[Ashtekar, Isham, Lewandowski, Rovelli, Smolin, ..., BD, Geiller, ...]

Areas have a discrete spectrum.

[Rovelli, Smolin, ...]

Quant. extension of length metric space to area metrics.
Forced by discrete area spectrum. [BD,Ryan; BD Padua-d
Characterized by Barbero-Immirzi parameter γ. [BD, Ryan] γ is an anomaly parameter.

Spin foams

Loop quantum gravity:

Rigorous background independent notion of quantum geometry. Closely related to TQFTs with defects.
[Ashtekar, Isham, Lewandowski, Rovelli, Smolin, ..., BD, Geiller, ...]

Areas have a discrete spectrum.

[Rovelli, Smolin, ...]

Quant. extension of length metric space to area metrics.
Forced by discrete area spectrum. \quad [BD,Ryan; $B D$ Padua-A
Characterized by Barbero-Immirzi parameter γ. [BD, Ryan] γ is an anomaly parameter.

Common to:

Ryu-Takayanagi, tensor networks, bh entropy, ...

Spin foams

Loop quantum gravity:

Rigorous background independent notion of quantum geometry. Closely related to TQFTs with defects.
[Ashtekar, Isham, Lewandowski, Rovelli, Smolin, ..., BD, Geiller, ...]

Spin foams:
Path integral based on LQG quantum geometry.
Based on Plebanski formulation of gravity.
[Reisenberger, Rovelli, Barret, Crane, ... , Engle, Pereira, Rovelli, Livine,
Freidel, Kransov, Baratin, Oriti, ...,Asante, BD, Haggard, Padua-Arguelles...]

Spin foams

Loop quantum gravity:

Rigorous background independent notion of quantum geometry. Closely related to TQFTs with defects.
[Ashtekar, Isham, Lewandowski, Rovelli, Smolin, ..., BD, Geiller, ...]

Spin foams:

Path integral based on LQG quantum geometry.
Based on Plebanski formulation of gravity.
[Reisenberger, Rovelli, Barret, Crane, ... , Engle, Pereira, Rovelli, Livine,
Freidel, Kransov, Baratin, Oriti, ... Asante, BD, Haggard, Padua-Arguelles...]

Can spin foams lead to a gravitational dynamics?
[Bonzom, Hellmann, Kamiński, Han, ...,Engle, Kamiński, Oliveira, Dona, Gozzini, ...]
Classical Plebanski formulation requires constraining configuration to length metric space.
"Flatness problem" as a result of γ-anomaly.

Areas are the (more) fundamental variables.

Common to:

Ryu-Takayanagi, tensor networks, bh entropy, ...

Spin foams

Loop quantum gravity:

Rigorous background independent notion of quantum geometry. Closely related to TQFTs with defects.
[Ashtekar, Isham, Lewandowski, Rovelli, Smolin, ..., BD, Geiller, ...]

Spin foams:

Path integral based on LQG quantum geometry.
Based on Plebanski formulation of gravity.
[Reisenberger, Rovelli, Barret, Crane, ... , Engle, Pereira, Rovelli, Livine,
Freidel, Kransov, Baratin, Oriti, ...,Asante, BD, Haggard, Padua-Arguelles...]

Can spin foams lead to a gravitational dynamics?
[Bonzom, Hellmann, Kamiński, Han, ...,Engle, Kamiński, Oliveira, Dona, Gozzini, ...]
Classical Plebanski formulation requires constraining configuration to length metric space.
"Flatness problem" as a result of γ-anomaly.

Is there an action for area metrics that leads to
General Relativity in the low energy limit?

Effective Spin foams
 Can spin foams lead to a gravitational dynamics?

Transparent encoding of the dynamics. Numerical simulations are faster by several magnitudes: seconds vs months.

Effective Spin foams
 Can spin foams lead to a gravitational dynamics?

Transparent encoding of the dynamics. Numerical simulations are faster by several magnitudes: seconds vs months.
First explicit computation of expectation values testing discrete EOM: reproduce discrete GR for sufficiently small γ.
"Flatness problem" resolved in the discrete.

Effective Spin foams

Can spin foams lead to a gravitational dynamics?

Transparent encoding of the dynamics. Numerical simulations are faster by several magnitudes: seconds vs months.
[Asante, BD, Haggard 2020 PRL]
[Asante, BD, Haggard 2020 CQG]

Results: - Except for effective length metric all dof are Planck massive

- After integrating out all these additional dof:
- Leading order: (Linearized) Einstein-Hilbert action
- Next order: Weyl squared which comes from integrating out effective area metric
- Universality: Does not depend on details of spin foam models or on value of γ.

Effective Spin foams

Can spin foams lead to a gravitational dynamics?

Transparent encoding of the dynamics. Numerical simulations are faster by several magnitudes: seconds vs months.
[Asante, BD, Haggard 2020 PRL]
First explicit computation of expectation values testing discrete EOM: reproduce discrete GR for sufficiently small γ.
"Flatness problem" resolved in the discrete.

Perturbative continuum limit on lattice: $\lambda \gg a$

Results: - Except for effective length metric all dof are Planck massive

- After integrating out all these additional dof:
- Leading order: (Linearized) Einstein-Hilbert action
- Next order: Weyl squared which comes from integrating out effective area metric
- Universality: Does not depend on details of spin foam models or on value of γ.

Effective Spin foams
 Can spin foams lead to a gravitational dynamics?

Transparent encoding of the dynamics. Numerical simulations are faster by several magnitudes: seconds vs months.
[Asante, BD, Haggard 2020 PRL]
First explicit computation of expectation values testing discrete EOM: reproduce discrete GR for sufficiently small γ.
"Flatness problem" resolved in the discrete.

Perturbative continuum limit on lattice: $\lambda \gg a$

Results: - Except for effective length metric all dof are Planck massive

- After integrating out all these additional dof:
- Leading order: (Linearized) Einstein-Hilbert action
- Next order: Weyl squared which comes from integrating out effective area metric
- Universality: Does not depend on details of spin foam models or on value of γ.

Very surprising!!!
Resolves "flatness problem"
in the continuum.

Analysis directly in the continuum: Modified Plebanski theory framework. [Krasnov 2008+; Freidel 2008]
[BD, Borissova 2022
Results: - Derivation of action for area metrics from (modified) Plebanski action.

- Integrating out additional area metric dof's (linearized):

$$
L_{e f f}=L_{E H}-\frac{1}{4} \frac{1}{\square-M(\gamma)^{2}} \text { Weyl }^{2} \quad \text { Ghost-free! }
$$

Effective Spin foams
 \section*{Can spin foams lead to a gravitational dynamics?}

Transparent encoding of the dynamics. Numerical simulations are faster by several magnitudes: seconds vs months.
[Asante, BD, Haggard 2020 PRL]
First explicit computation of expectation values testing discrete EOM: reproduce discrete GR for sufficiently small γ.
"Flatness problem" resolved in the discrete.

Perturbative continuum limit on lattice: $\lambda \gg a$

Results: - Except for effective length metric all dof are Planck massive

- After integrating out all these additional dof:
- Leading order: (Linearized) Einstein-Hilbert action
- Next order: Weyl squared which comes from integrating out effective area metric

Very surprising!!!
Resolves "flatness problem"
in the continuum.

- Universality: Does not depend on details of spin foam models or on value of γ.

Analysis directly in the continuum: Modified Plebanski theory framework. [Krasnov 2008+; Freidel 2008]
[BD, Borissova 2022]
Results: - Derivation of action for area metrics from (modified) Plebanski action.

- Integrating out additional area metric dof's (linearized):

$$
L_{e f f}=L_{E H}-\frac{1}{4} \frac{1}{\square-M(\gamma)^{2}} \text { Weyl }^{2} \quad \text { Ghost-free! }
$$

Spin foams can lead to a gravitational dynamics in the continuum limit.

Rest of the talk: application to cosmology by symmetry reduction with focus on Lorentzian features.

Our universe is Lorentzian
 ... most of the times.

Spin foams are proper quantum mechanical path integrals.

For Euclidean geometries.

For Lorentzian geometries.

Our universe is Lorentzian ... most of the times.

Spin foams are proper quantum mechanical path integrals.

$$
Z \sim \int \mathscr{g} \operatorname{geom} \exp (i S(\text { geom }))
$$

For Euclidean geometries.

For Lorentzian geometries.

Light cone structure in simplicial path integrals

Lorentzian simplicial geometries: Regge calculus

- Based on triangulation of space-time. Variables are lengths assigned to edges. Very natural discretization of Einstein-Hilbert action
- Each simplex has a well defined Lorentzian geometry: it is Minkowski-flat.

Lorentzian simplicial geometries: Regge calculus

- Based on triangulation of space-time. Variables are lengths assigned to edges. Very natural discretization of Einstein-Hilbert action
- Each simplex has a well defined Lorentzian geometry: it is Minkowski-flat.
- Nevertheless it is easy to construct configurations with irregular light cone structure

Lorentzian simplicial geometries: Regge calculus

- Based on triangulation of space-time. Variables are lengths assigned to edges. Very natural discretization of Einstein-Hilbert action
- Each simplex has a well defined Lorentzian geometry: it is Minkowski-flat.
- Nevertheless it is easy to construct configurations with irregular light cone structure

- Such configurations lead to imaginary terms in the Regge action. Sign of this imaginary term seems to depend on choice of convention.

Lorentzian simplicial geometries: Regge calculus

- Based on triangulation of space-time. Variables are lengths assigned to edges. Very natural discretization of Einstein-Hilbert action
- Each simplex has a well defined Lorentzian geometry: it is Minkowski-flat.
- Nevertheless it is easy to construct configurations with irregular light cone structure

- Such configurations lead to imaginary terms in the Regge action. Sign of this imaginary term seems to depend on choice of convention.
- Constructing Regge action for complexified length variables reveals: irregular light cone structures lead to branch cuts, explaining these opposite signs

Lorentzian simplicial geometries: Regge calculus

- Based on triangulation of space-time. Variables are lengths assigned to edges. Very natural discretization of Einstein-Hilbert action
- Each simplex has a well defined Lorentzian geometry: it is Minkowski-flat.
- Nevertheless it is easy to construct configurations with irregular light cone structure

- Such configurations lead to imaginary terms in the Regge action. Sign of this imaginary term seems to depend on choice of convention.
- Constructing Regge action for complexified length variables reveals: irregular light cone structures lead to branch cuts, explaining these opposite signs

Are these just annoying discretization artifacts?

No. They can actually be useful.

- Imaginary metrics / imaginary terms in the action also appear in the continuum, e.g. for topology change.
- Light cone irregularities (co-dimension 2 conical singularities) introduced by hand in Lorentizan continuum path integral [Marolf 2022]
- This talk: Important to get entropy for de Sitter space
- This talk: Branch cut choice makes a more subtle choice in the continuum more obvious

Discretized de Sitter

One time evolution step in de Sitter

With symmetry reduction:
one integration variable \sim lapse

Discretized de Sitter

One time evolution step in de Sitter

With symmetry reduction:
one integration variable \sim lapse

Compactified Lorentzian de Sitter

[Continuum:
Banihashemi, Jacobson]
Aim: Entropy from Lorentzian
Path integral.

With symmetry reduction:

Two integration variables \sim lapse, equator

Discretized de Sitter

One time evolution step in de Sitter

With symmetry reduction:
one integration variable \sim lapse

Compactified Lorentzian de Sitter

[Continuum:
Banihashemi, Jacobson]
Aim: Entropy from Lorentzian
Path integral.

With symmetry reduction:

Two integration variables ~ lapse, equator

Discretized de Sitter - two choices

One time evolution step in de Sitter

Discretized de Sitter - two choices

One time evolution step in de Sitter

[Continuum-Mini-Super-Space:
Feldbrugge, Lehners, Turok]

Discretized de Sitter - two choices

One time evolution step in de Sitter

[Continuum-Mini-Super-Space:
Feldbrugge, Lehners, Turok]

Need irregular configurations to agree with continuum result.

Discretized de Sitter - two choices

[Continuum-Mini-Super-Space:
Feldbrugge, Lehners, Turok]

Compactified de Sitter

Need irregular configurations to obtain de Sitter entropy. Lorentzian path integral can give exp. enhancement.

Discretized de Sitter - two choices

[Continuum-Mini-Super-Space:
Feldbrugge, Lehners, Turok]

Compactified de Sitter

Need irregular configurations to obtain de Sitter entropy. Lorentzian path integral can give exp. enhancement.

Is their a similar choice in the continuum?
Yes, in choosing how to circumvent the $\mathrm{N}=0$ singularity. [Continuum-Mini-Super-Space:
Diaz-Dorronsoro, Halliwell, Hartle, Hertog, Janssen]

Discretized de Sitter - two choices

[Continuum-Mini-Super-Space:
Feldbrugge, Lehners, Turok]

Need irregular configurations to agree with continuum result.

Compactified de Sitter

Need irregular configurations to obtain de Sitter entropy. Lorentzian path integral can give exp. enhancement.

Is their a similar choice in the continuum?
Yes, in choosing how to circumvent the $\mathrm{N}=0$ singularity.
[Continuum-Mini-Super-Space:
Diaz-Dorronsoro, Halliwell, Hartle, Hertog, Janssen]

Irregular light cone structures have an important role. Surprise: important for entropy calculation.

How to compute the Lorentzian path integral?

- Monte Carlo: not available.
- For integrals: deformation of contour, for example Lefschetz thimble.
- For sums? E.g. Spin foam sums.

How to compute the Lorentzian path integral?

- Monte Carlo: not available.
- For integrals: deformation of contour, for example Lefschetz thimble.
- For sums? E.g. Spin foam sums.
\Rightarrow Acceleration techniques for series convergence. For sums and integrals. In particular: Shanks transform (with Wynn's epsilon algorithm).
[Schmidt 4I, Shanks 55, Wynn 56,...] [BD, Padua-Arguelles 23]

How to compute the Lorentzian path integral?

- Monte Carlo: not available.
- For integrals: deformation of contour, for example Lefschetz thimble.
- For sums? E.g. Spin foam sums.
\Rightarrow Acceleration techniques for series convergence. For sums and integrals. In particular: Shanks transform (with Wynn's epsilon algorithm).
[Schmidt 4I, Shanks 55, Wynn 56, ...] [BD, Padua-Arguelles 23]

Effective
spin foam
Expectation values:

Rel. Error~10 ${ }^{-8}$

Works very well for sums with actions that are at most linear in the summation variable.
Consistent with quantum mechanics (Bohr quantization) and spin foams.

Effective spin foams for de Sitter

Due to symmetry reduction only difference between Regge path integral and effective spin foams: integral vs sum.
What is the effect of the discrete area spectrum?

Quantum deSitter

Effective spin foams for de Sitter

Due to symmetry reduction only difference between Regge path integral and effective spin foams: integral vs sum. What is the effect of the discrete area spectrum?

Quantum deSitter

Lorentzian regime transition: very small quantum effects.
Almost no difference between Regge and spin foam.

Effective spin foams for de Sitter

Due to symmetry reduction only difference between Regge path integral and effective spin foams: integral vs sum.

> What is the effect of the discrete area spectrum?

Quantum deSitter

Lorentzian regime transition: very small quantum effects. Almost no difference between Regge and spin foam.

Euclidean regime transition:
Significant differences between Regge and spin foams.

Effective spin foams for de Sitter

Due to symmetry reduction only difference between Regge path integral and effective spin foams: integral vs sum.
What is the effect of the discrete area spectrum?

Quantum deSitter

Lorentzian regime transition: very small quantum effects. Almost no difference between Regge and spin foam.

Euclidean regime transition:
Significant differences between Regge and spin foams.

Discrete spectra: Make tunnelling amplitudes less suppressed.
Should be confirmed by using more time steps.

Summary

- Continuum limit of spin foams can lead to general relativity.
- Effective action from spin foams: Weyl curvature squared term from quantum extension of configuration space to area metrics
- Ghost free

$$
L_{e f f}=L_{E H}-\frac{1}{4} \frac{1}{\square-M(\gamma)^{2}} \text { Weyl }^{2}
$$

Summary

- Continuum limit of spin foams can lead to general relativity.
- Effective action from spin foams: Weyl curvature squared term from quantum extension of configuration space to area metrics
- Ghost free

$$
L_{e f f}=L_{E H}-\frac{1}{4} \frac{1}{\square-M(\gamma)^{2}} \text { Weyl }^{2}
$$

- Lorentzian simplicial path integral: configurations with light cone irregularities
- Lead to branch cuts and imaginary terms in the action: suppressed or enhanced quantum amplitudes - Important role for thermodynamic interpretation - Appears in the continuum in a much more subtle way

Summary

- Continuum limit of spin foams can lead to general relativity.
- Effective action from spin foams: Weyl curvature squared term from quantum extension of configuration space to area metrics
- Ghost free

$$
L_{e f f}=L_{E H}-\frac{1}{4} \frac{1}{\square-M(\gamma)^{2}} \text { Weyl }^{2}
$$

- Lorentzian simplicial path integral: configurations with light cone irregularities
- Lead to branch cuts and imaginary terms in the action: suppressed or enhanced quantum amplitudes - Important role for thermodynamic interpretation - Appears in the continuum in a much more subtle way
- Effective spin foam path integral for de Sitter
- Shank transform to deal with sums (and integrals)
-Weakening of decay of no-boundary probability amplitude

Lorentzian path integral

Spin foams, simplicial Regge, continuum, CDT, causal sets, ...

Lots of things to understand!

Computational challenges ...

Intriguing conceptual questions.

