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Outlook

*(Effective) Spin foams

Light cone structure in Lorentzian simplicial path integrals
(for cosmology)

*Effective Spin foams for cosmology
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Effective Spin foams

Can spin foams lead to a gravitational dynamics!?
Transparent encoding of the dynamics. Numerical simulations are faster by several magnitudes: seconds vs months. [Asante, BD, Haggard 2020 PRL ]

First explicit computation of expectation values testing discrete EOM: reproduce discrete GR for sufficiently small . [Asante, BD, Haggard 2020 CQG]
“Flatness problem” resolved in the discrete.

Perturbative continuum limit on lattice: A > > a [BD 2021, BD, Kogios 2022]

Results: » Except for effective length metric all dof are Planck massive

» After integrating out all these additional dof: Very surprising!!!

 Leading order: (Linearized) Einstein-Hilbert action Resolves “flatness problem

* Next order: Weyl squared which comes from integrating out effective area metric in the continuum.

* Universality: Does not depend on details of spin foam models or on value of y.

Analysis directly in the continuum: Modified Plebanski theory framework.  [Krasnov 2008+; Freidel 2008] [BD, Borissova 2022]
Results: e Derivation of action for area metrics from (modified) Plebanski action.
* Integrating out additional area metric dof’s (linearized): I .. = 1 Wey12 Ghost-free!

3 coupling constants G, /A, y: as needed in Asymptotic Safety, CDT, EDT. y is an anisotropy parameter as in CDT.



Spin foams can lead to a gravitational dynamics in the continuum limit.

Rest of the talk: application to cosmology by symmetry reduction
with focus on Lorentzian features.
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/ Light cone structure Consider Regge calculus.

Lorentzian path integral

In Regge calculus. (Integral)

How to compute it?

In Spin Foams. (Sum)
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» Based on triangulation of space-time. Variables are lengths assighed to edges. Very natural discretization of Einstein-Hilbert action
 Each simplex has a well defined Lorentzian geometry: it is Minkowski-flat.

* Nevertheless it is easy to construct configurations with irregular light cone structure [Jordan, Lol 2013]

* Such configurations lead to imaginary terms in the Regge action. Sign of this imaginary term seems to depend on choice of convention. [Sorkin 2019]

» Constructing Regge action for complexified length variables reveals: irregular light cone structures lead to branch cuts, explaining these opposite signs
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?? Who ordered these configurations ??

?? What do we do with these configurations ??



Are these just annoying discretization artifacts?

No. They can actually be useful.

* Imaginary metrics / imaginary terms in the action also appear in the continuum, e.g. for topology change. [Louko, Sorkin 1995, ....., Witten 2022, ...]

* Light cone irregularities (co-dimension 2 conical singularities) introduced by hand in Lorentizan continuum path integral [Marolf 2022]

 This talk: Important to get entropy for de Sitter space [BD, Jacobson, Padua-Arguelles TO APPEAR]

e This talk: Branch cut choice makes a more subtle choice in the continuum more obvious
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Discretized de Sitter - two choices

One time evolution step in de Sitter
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Need irregular configurations to obtain de Sitter entropy.

Lorentzian path integral can give exp. enhancement.

Is their a similar choice in the continuum?
Yes, in choosing how to circumvent the N=0 singularity.
[Continuum-Mini-Super-Space:

Diaz-Dorronsoro, Halliwell, Hartle, Hertog, Janssen]

~Irregular light cone structures have an important role.

Surprise: important for entropy calculation.
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How to compute the Lorentzian path integral?
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How to compute the Lorentzian path integral?

* Monte Carlo: not available. = Acceleration techniques for series convergence. For sums and integrals.

* For integrals: deformation of contour, for example Lefschetz thimble. In particular: Shanks transform (with Wynn’s epsilon algorithm).

o ! i
For sums?  E.g.Spin foam sums. [Schmidt 41, Shanks 55, Wynn 56,...1 [ BD, Padua-Arguelles 23]
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Works very well for sums with actions that are at most linear in the summation variable.
Consistent with quantum mechanics (Bohr quantization) and spin foams.
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Due to symmetry reduction only difference between Regge path integral and effective spin foams: integral vs sum.

What is the effect of the discrete area spectrum!?

(/Y

Quantum deSitter
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Lorentzian regime transition: very small quantum effects. Euclidean regime transition:
Almost no difference between Regge and spin foam. Significant differences between Regge and spin foams.

Discrete spectra: Make tunnelling amplitudes less suppressed.

Should be confirmed by using more time steps.
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1 1 )
* Ghost free L= Lpy Weyl
7 4 0~ M)
l\/"/

* Lorentzian simplicial path integral: configurations with light cone irregularities

A
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* Lead to branch cuts and imaginary terms in the action: suppressed or enhanced quantum amplitudes | A
* Important role for thermodynamic interpretation A exp )
* Appears in the continuum in 2 much more subtle way . O 2

o.1ooé

0.010%

« Effective spin foam path integral for de Sitter < oo0]

104 3

* Shank transform to deal with sums (and integrals)

100 F

* Weakening of decay of no-boundary probability amplitude 1078



Lorentzian path integral

Spin foams, simplicial Regge, continuum, CDT, causal sets, ...

Lots of things to understand!

Computational challenges ...

Intriguing conceptual questions.



