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An overall perspective from Astrid

Standard Model asymptotically safe Estring theory
A E scaling regime
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Some Themes

1. Could we live on a brane?
2. Safe Gravity, Anisotropies and Inhomogeneity

3. No Boundary Proposal and Complex Metrics

4. Cosmology as a Filter on the Landscape



Could we live on a brane?

» String theory invites a perspective of gravity
confined in a subspace of some higher D
dimensional parent.

« A standard picture of how an effective 4d
theory can emerge involves compactitication
of the (D-d) extra dimensions.

» But there could be other possibilities,
suggested by the brane solutions of
supergravity effective field theory.



Traditional compact-space dimensional reduction
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Concentrating gravity on a brane

» String effective field theories involve a
metric, antisymmetric tensor form fields of
various ranks, and their associated
spinors.

* Brane solutions carry electric or magnetic
type charges for the form tields.

* Fluctuations around such branes can give
rise to a braneworld effective theory.



Gravity Localisation

* The transverse-space structure of fluctuated brane
solutions follows from a second-order differential
equation. Consistent embeddings correspond to one
type of boundary condition (essentialli/)DirichIet), but
another type can be possible, with Robin boundary
conditions.

* The consistent embeddings are basically smeared
throughout the transverse dimensions, but in some
cases one can obtain a different genuine
concentration / localisation of gravity near the brane
worldvolume.

* One example of this haf)g)ens where the vacuum
brane occurs in the D=10 embedding of the 1984
Salam-Sezgin theory.



Salam-Sezgin theory and its vacuum in D=10

D=6  Lss = 3R— e FWFW €29 G,GMP — 10,0016 — g?e?
55 Guvp = 301,Byp) + 3F Ay

Vacuum solution after embedding into D=10 Type I:
d510 = HS_S‘;‘(dx“dx,u + dy? + réz [dy) + sech 2p (dx + cos 0 dy)]?) + HS%S ds;
e? — HS%S LAy = r;z [dx + sech 2p d@b} A (dx + cos dp)
Cveti¢, Gibbons & Pope, Nucl. Phys. B677 (2004) 164; Crampton, Pope & KSS, 1408.7072

where Hss = sech2p and
1
ds3 = (cosh 2pdp? + = cosh 2p(df? + sin Odyp?)
) 4 }4d Eguchi-Hanson metric
+ 3 sinh 2p tanh 2p(dx + cos 0dy)?)

The " are the 4d worldvolume coordinates, which in the above “vacuum” state is flat;
y is an Slcircle coordinate.

Taking this solution as a brane vacuum, one can embed an N=2, d=4 supergravity on the
p = 0 world volume. But there is another possibility.



* The SS vacuum solution has a "hyperbolic”
noncompact transverse space structure
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Instead of making a consistent embedding of N=2, d=4 supergravity,
which amounts to smearing the d=4 fields up through the transverse
space, one can use separation of variables hu.(x, p) = hu(x)é(p) where p
is the “radial” variable in the noncompact transverse space.

The transverse Sturm-Liouville system turns out to have a Poschl-
Teller integrable structure which allows the transverse wavefunction
spectrum to be solved explicitly. The spectrum contains a single zero
mode followed by a gap and then a continuous spectrum above the

gap edge.
2v/3

The zero mode £o(p) = —— log(tanh p) is normalisable. The
corresponding h,,(z) describe massless gravity on / near the p =0
worldvolume.

2 3888((3)2G,g>
One obtains a finite Newton constant G, = 4 _ C(3)°Gug
3271 7r8£y

For the transverse Sturm-Liouville problem, the boundary condition is
in this case is of Robin structure (mixed Dirichlet-Neumann):

lim (sinh 2p log tanhpfb\) (p) — 280 (p)) =0

p—0t



* The resulting dynamics does not correspond to a
consistent embedding smeared through the
transverse space, but instead concentrates gravity and
the other fields in the region near the worldvolume.

* Analogous d=4 gravity-concentrating systems exist in
some other cases (using analysis of singular Sturm-
Liouville systems originating with H. Weyl, then A.
Zettl). The zero modes are normalisable, but there is
no mass gap in these other cases.

e Randall-Sundrum | (cf also Lisa’s talk)
e D3-branes on a resolved conifold over S°/Z3
e D3-branes on resolved conifolds over YP:9

e D3-branes on a resolved cone over T+1 /7,

* Note: the Salam-Sezgin geometry can also be related
to the SLED program (Supersymmetry in Large Extra
Dimensions)



Safte Gravity and Weyl curvature

J-L. Lehners & K.S.S., 1909.01169

* Niedermaier's approach to asymptotic
safety was based on renormalizable

g raV|ty M. Niedermaier, PRL 103, 101303 (2009) & Nucl. Phys. B 833 (2010) 226
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About that spin-2 ghost

 Thanks to Bob Holdom and John
Donoghue for great discussions on why
one shouldn’t devote too much time to it!
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Asymptotic Safety

* Couplings run:

d
M@QN — fg(ng)‘vgaw)v

Note that John Donoghue has recent questions

d about the appropriateness of these standard
,u@)\ = fi (gN, A, O, w) , ud/du beta functions

d 133

U—:uo = — o,

d,u 16072

d 25 + 1098w + 200w?
U—w = — o

d,u 96072

» Quadratic curvature terms are asymptotically
free O ~~ ]_/ lﬂ,u —> O Fradkin & Tseytlin 1981, 1982;

Avramidy & Barvinsky 1985
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Asymptotic Safety

» Couplings run:
d

M@LCJN = folgn, A, o,w)
uik = falgn, A, o, w)
du T
d 133,
'M@U ~ 160727
d 25+ 1098w + 200w?
Pan™ =~ 96072 ’

» Quadratic terms are asymptotically free
» Evidence for a stable non-trivial fixed
POINT % — 0. w* ~ —0.0228

Codello & Percacci hep-th/0607128; Codello, Percacci & Rahmede 0805.2909;
D. Litim, to appear 15



Finite Euclidean Action principle

cf also J.D. Barrow & F.J. Tipler, Nature 331 (1988) 7

A quantum amplitude is weighted by the
action

We only get a well-defined contribution it
the action is finite

In particular, demand that the time
integral be convergent in the approach to

zero volume at t=0
And assume finite spatial volume
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Anisotropies: Bianchi X metric

« Useful metric to analyse:

Lo\ 2
dS%X = —dtQ —|— Z <?> Om

(\V)

[1 = ae%(5++\/§5—) oy =

* Leads to the classical action

o = [ atay=oy =2 [ it (—Sd? + a8+ B2) - U(B+,B—))
U(B+,8-)=—2 <625+ e BrmV3s- e—5++\/§5—)

1 (6—4ﬁ+ | 2B+ —2V3B- _|_€25++2\/§B_> potential

Anisotropy
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Bianchi IX: quadratic curvature terms

 Quadratic curvature terms

2
/d4w\/—_gR2 = 2w2/dm [6 +6— + a 2(82 + %) — (6+,5)]

— /ciéL:L'\/—igC’WPUC’W’O(I
“ort [ s’ K_ . H) (2432 R — R — (3 +5‘1>2]
a
+ 4a [—(B +3HB)Ups_ — (By +3HB)Up, — (22 + 62 + Bi) U]

+ % (—6_8/8+ + 6_56+_\/§B_ + 6_56++\/§B— — e 2B+ + €5+—3\/§5— i €5+—|—3\/§5_
3a

Br—VBB- _ BitVBBo | 4B —4VBB- _ 4B+ +4VBB- | 4B+ —2V3B- | 64B++2\/§/3—) }
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Anisotropies and finite action

* Assume BKL t-dependences
a o< t’ V3P~ oc e+ o tP
* For Einstein-Hilbert have, e.g.,/ ac’dt = /t38_2dt o 3571
so one has scaling powers
3s — 1,
s+2p+1, s—4p+1,
s—p—m-+1, s—p+m-+1, s+2p—2m+1, s+2p+2m+1
* These lead to requirements that can easily be
satisfied, with anisotropies blowing up at the big bang
(negative p and/or m):
1 1

1 1
5> 3, —5(1+3)<p<1(1+3), —5(1+S)<pim<1—|—s
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e Quadratic curvature terms, however, lead to
the tfollowing scalings near t=0:

3s—3, s—1—-p—m, s—1—p+m, s—14+2p+2m, s—1+4+2p—2m
s—1+2p, s—1—4p, 1—s5s—8p, 1—s—>dp—m, 1—s—5p+m, 1—s5—2p
l-s+p+3m, 1—s+p—-—3m, 1l—s+p+m, 1—-—s5+p—m,
l—s+4p+4m, 1—s+4dp—4m, 1—s+4dp+2m, 1—s+4p—2m

* These lead to mutually exclusive conditions

1 1 1 1
s>1, —5(3—1)<p<1(s—1), —5(1—8)<p<§(1—3)

p+m>s—1, p+m<s—1, p—m<s—1, p—m>s—1

* Hence the quadratic gravity terms filter out
universes that start out anisotropically.

20



Similarly for Inhomogeneities

LemaTtre—ToIman-Borjfllg metric:
ds? = —dt? + ﬁdﬁ + A?(d6? + sin® 0d¢?)
The scale factor A now has dependence A(t,r) but F(r) only

Al : AFF AAA . 2
/d% —g?sz/dtdrF<1—F2+A2—2 + 2 AA +2AA+A—A’>

A Al Al
~ tS—|—1 ~ tBS—].

.o 2

/d4x\/—_gR2 :87r/dtdr A‘;VF (1 — F? 4+ A® —2Ai,F/ +2Ajj4/ + 244 + %A/)
~ t_8+1 ~ t38—3

Giving conflicting requirements: s <1 and s>1

In the absence of inhomogeneities, however, one finds
accelerated expansion A~ t>with s > 1.



The No-Boundary Proposal and Complex Metrics
(cf also Bianca’s talk)

Feldbrugge, Lehners & Turok, 1703.02076; Lehners, 2209.14669; Lehners & Quintin, 2309.03272

* |If the geometry is smoothly rounded off, then
— An infinite regression is avoided
— The initial singularity is avoided
— We may not need to specify any boundary conditions

Requires
Euclidean

eometr
g y

What came before?



No Boundary Expectations

* The ideas were spelled out in
detail by Hartle & Hawking

(Phys.Rev.D28 (1983) 2960-2975)

* Initial proposal: the wave function of the universe
should be calculated via a path integral defined by
a sum over compact, regular, Euclidean metrics

final

U( final) :/ e~ Se/h

no—boundary s



(b, x)
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regular

Path integral is over all four-geometries that are regular in
the past and that reach specified (real) values a=b, ¢=y¢

Universe is finite, non-singular and self-contained

Saddle point approximation when S/A > 1: the dominant
geometries are extrema of the action §S = ()

With the required boundary conditions these are typically
complex — these are called “fuzzy” instantons

Hartle & Hawking, 0803.1663 »



Hawking’s Prototype Instanton: complex de Sitter

« Here there is no scalar field, only a cosmological
constant A = 3 H?

« Half of S*is glued to dS4

T plane

N
-
a = sin(§ + it)

— cosht

a = sin(7)



Problem with integrating over complex metrics:
Pathological cases Witten, 2111.06514

Complex versions of flat space remain (zero-action)
solutions of the vacuum Einstein equations:

ds* =dR* + R*dQ3
— R'(v)*du?® + R(u)*dQ; T

Standard path in complex R plane:

This path is a wormhole: —_—T,

Because this has zero action, this

would have the same likelyhood as a
classical evolution — such solutions 4
must presumably be eliminated from

the path integral 2




Louko-Sorkin-Kontsevich-Segal-Witten criterion

* Proposal: a metric is allowable it a generic quantum field
theory can be defined on it, in the sense that its path
integral converges for all p-form actions:

27



Proposal: a metric is allowable if a generic quantum field
theory can be defined on it, in the sense that its path
integral converges for all p-form actions:

\e%sl <1 — Re[\/gg"™* - g'rtirt1 Fy F; > 0

ip41 1"-jp+1}

Justification: only spin < 1 fields (scalars and gauge fields)
have local covariant stress-energy tensor [Weinberg-Witten
theorem]

Require real fields because we want to define a Hilbert
space (want this to be defined locally, not via analytic
continuation)

Kontsevich&Segal provide arguments that QFT is well
defined under these asssumptions and that they might be
able to replace the standard axioms of QFT



Simple form for the metric

Locally write the D-dim metric in diagonal form: gi; = dijA;

Then for example

T 1 T
Re(vg) >0 — —2- < > (ZiArg()\z-)) <3

More generally, one requires that for any subset S of the set
(1,2,...,D) one must have Re(y/gIlicsA; ) >0

Putting all combinations for all p-forms together requires
4 B

Y= Yi|Arg(\)| < m

. J

29



Boundary of an allowable domain

Real Lorentzian metrics have

Arg(Ag) = £m, Arg(N\;) =0
Hence they are on the boundary of the
allowable domain

One can regulate them, e.g. for FLRW:

ds® = —(1 F ie)dt* + a(t)*dz?
£>0 corresponds to the standard ie prescription,
oropagation forwards in time by ¢~ *t=¢H

Vice versa for <0
But one cannot cross the =0 line

30



Eliminating pathological metrics

e | SKSW criterion eliminates zero-action wormholes
R

ds® = R/ (u)*du® + R(u)*dQ3 D

S = [Arg(R (w)?)] + 3| Arg(R(u)?) |

when R crosses the imaginary axis X > (D — 1)«

31



But scalars can originate from the metric

» Dimensional reduction, require ¢ to be normalised

gundr™da® = e**?g,, drtdz” + e**? g ;datda’

d—2
=g 3" b:\/(D—d)(D—Q)

* |f the 4-dimensional metric is Euclidean, then obtain

D—-2 T
| ~ —

* Note: imaginary part of ¢ (not argument) is bounded

32



e A similar effect occurs for conformal transformations
to Einstein frame

* No-boundary solutions require complex scalar fields
in general:

Ve
Im p)=—2_
(¢sp) i
* This is allowed:
— if the scalars originate from the metric ‘V,(b’ < 1
— if the potential is flat enough v R S

* This constraint arises already from looking only at
South Pole values - stronger conditions are
expected from analysing the full instanton

33



D=8 Starobinsky model

« R“corrections and 4-form flux are present in 10-
dimensional supergravity

« Consider a toy model in 8 dimensions, compoc’rified on $*

J

/ F(4) = 2n4V01(S4)
V(e) Vx)
— n=17
n=13

n=11

X

“size of internal sphere”

1 ¢

Small flux: negative minimum
Medium flux:

Large flux: positive but decompactifies
34

Inflationary potential for the scalaron ¢



Rescaling and dimensional reduction

* 2 steps:
— Rewrite as gravity + scalar in Einstein frame

scalaron

Juv = 6W qbgw

e\/;(b =1+ 4aR?

— Dimensional reduction on 4-sphere
2 —E=X3.2 1 s 2
dsz = e V3¥ds; + e V3 dQy

F<4) — 2’n4VOI(S4) size of 4-sphere

\

guantised .



* This results in a theory of gravity coupled to 2
canonically normalised scalar fields with a
potential:

5 2
Vg, x) =a (1 — e_\/§¢> CeTVEX 4 nie‘Q\/gX — e~ VX

* The shape of the potential depends crucially on
the amount of flux n,

(cf Fernando’s talk on the importance of fluxes for moduli stabilization)
36



Evolution to real time and fields
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Density plots of the imaginary values of the scale factor and the scalar field, in the complex
time plane. The South Pole resides at the origin; the horizontal axis corresponds to Euclidean
time, the vertical axis to Lorentzian time. Darker colors indicate smaller imaginary values,

so the black lines show the locus of real field values. The dashed line in the right panel
indicates the "Hartle-Hawking' contour. One can see that at late times, overlapping dark lines
emerge in both plots, indicating that one approaches a real, classical solution of the equations
of motion. This solution reaches the final values a;=200, ¢,=6 at time 7 = 53.185+83.538i,

as marked by the red dot.



No-boundary as a filter

A Probability
; A NV T SoRHon No-boundary solution,
Negative potential & but decompactifying
No solution stable internal P S
dimensions
———-—==‘.J t —— ——3 ——

Flux (quantised)

* No-boundary wave function
, and provides @

» Cosmology can act as a filter on the landscape,
significantly reducing the number of viable solutions
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