

Are all EFTs allowed?

With typical assumption that: UV completion is <u>Local, Causal, Poincare Invariant and Unitary</u>

Answer: NO! Certain low energy effective theories do not admit well defined UV completions

Positivity Bounds/S-matrix Bootstrap

- Place constraints on signs and magnitudes of irrelevant operators in an EFT - Particular fruitful for EFTs of higher spin particles and EFTs in broken states (i.e. for Goldstone/ Stuckelberg modes)
- Most constraints are double sided (compact bounds!)
- Bounds broadly consistent with naturalness/EFT power counting arguments

Non-relativistic Causality/Analyticity

Causal propagation:

$$G_{\rm ret}(t,t') = \theta(t-t')\Delta(t,t')$$

In momentum space:

$$G_{\rm ret}(\omega) = \int_{-\infty}^{\infty} dt \, e^{i\omega(t-t')} G_{\rm ret}(t,t')$$
$$= \int_{0}^{\infty} dt \, e^{i\omega t} \Delta(t,0)$$

Analytic in upper-half complex plane Causality implies analyticity!!!!

Lets add relativity!

Suppose we have a scalar operator $\hat{O}(x)$

Relativistic Locality tells us that

$$[\hat{O}(x), \hat{O}(y)] = 0$$

if $(x - y)^2 > 0$

Unitarity (positivity) tells us that

$$\langle \psi | \hat{O}(f)^2 | \psi \rangle > 0$$
 where

 $\hat{O}(f) = \int d^4x \, f(x) \hat{O}(x)$

Kallen-Lehmann Spectral Representation

Together with Poincare invariance these imply:

$$i\langle 0|\hat{T}\hat{O}(x)\hat{O}(y)|0|\rangle = \int \frac{d^d k}{(2\pi)^d} e^{ik.(x-y)}G_O(k)$$

$$G_O(k) = \frac{Z}{k^2 + m^2 - i\epsilon} + S(-k^2) + (-k^2)^N \int_{4m^2}^{\infty} d\mu \frac{\rho(\mu)}{\mu^N(k^2 + \mu - i\epsilon)}$$

$$S(-k^2) = \sum_{k=0}^{N-1} c_k (-k^2)^k \quad \lim_{\mu \to \infty} \rho(\mu) \sim \mu^{\Delta - d/2} \quad N = [\Delta - d/2 + 1]$$

 Δ UV Conformal weight

 $\rho(\mu) \geq 0$

Positive Spectral Density as a result of Unitarity

Analytic Structure

Define complex momenta squared $z = -k^2 + i\epsilon$

LEEFT valid here, can calculate pole and LE part of cut

UV completion - unknown?

Linear Positivity Bounds

$$G'_O(z) = S(z) + z^N \int_{\Lambda^2}^{\infty} d\mu \frac{\rho(\mu)}{\mu^N(\mu - z)}$$

$$M \ge N$$
$$D_M(z) = \frac{1}{M!} \frac{d^M}{dz^M} G'_O(z) = \int_{\Lambda^2}^\infty d\mu \frac{\rho(\mu)}{(\mu - z)^{M+1}}$$

$$D_M(0) = \int_{\Lambda^2}^{\infty} d\mu \frac{\rho(\mu)}{\mu^{M+1}}$$

 $D_M(0) > 0$ $D_M(0) \ge \Lambda^2 D_{M+1}(0)$

Positivity of these integrals enforces positivity of combinations of Wilson coefficients for Irrelevant operators

Nonlinear Moment Positivity

Maths by Stieltjes in 1890s, applied to scattering amplitudes positivity in 1970s!! Rejuvenated

in: Arkani-Hamed, Huang, Huang EFT-Hedron 2020 Bellazzini et al, Positive Moments ..., 2020

$$D_M(0) = \int_{\Lambda^2}^{\infty} d\mu \frac{\rho(\mu)}{\mu^{M+1}} = \left\langle \frac{1}{\mu^M} \right\rangle$$

 $det(D_M) > 0$

$$y^T D_M y = \sum_{p,q=0}^N D_{M+p+q} y^p y^q = \langle \mu^{-M} (\sum_{p=0}^N y^p \mu^{-p})^2 \rangle > 0$$

'positivity of N x N Hankel matrix'

$$(D_M)_{pq} = D_{M+p+q}$$

Nonlinear Moment Positivity

Maths by Stieltjes in 1890s, applied to scattering amplitudes positivity in 1970s!! Rejuvenated

in: Arkani-Hamed, Huang, Huang EFT-Hedron 2020 Bellazzini et al, Positive Moments ..., 2020

$$D_M(0) = \int_{\Lambda^2}^{\infty} d\mu \frac{\rho(\mu)}{\mu^{M+1}} = \left\langle \frac{1}{\mu^M} \right\rangle$$

Simply example Cauchy-Schwarz:

$$\langle (\mu^{-M} + \lambda \mu^{-N})^2 \rangle \ge 0$$
$$D_{2M} D_{2N} \ge (D_{N+M})^2$$

$$\begin{pmatrix} D_{2N} & D_{N+M} \\ D_{N+M} & D_{2M} \end{pmatrix}$$

'positivity of 2 x 2 Hankel matrix'

Repeated use of Cauchy Schwarz:

What does this tell us about EFT?

e.g. Suppose scalar field in EFT with tree level action

$$S = \int d^4x \hat{O}(x) [\Box + a_1 \frac{\Box^2}{\Lambda^2} + a_2 \frac{\Box^3}{\Lambda^4} + \dots] \hat{O}(x)$$

Tree level Feynman propagator is

$$G_O(z) = -\frac{1}{z + a_1 \frac{z^2}{\Lambda^2} + a_2 \frac{z^3}{\Lambda^4} + a_3 \frac{z^4}{\Lambda^6} + a_4 \frac{z^5}{\Lambda^8} \dots}$$

$$G'_O(z) = \frac{a_1}{\Lambda^2} + \frac{(a_2 - a_1^2)}{\Lambda^4}z + \frac{a_1^3 - 2a_1a_2 + a_3}{\Lambda^6}z^2 + \frac{a_4 - 2a_1a_3 - a_2^2 + 3a_1^2a_2 - a_1^4}{\Lambda^8}z^3 + \mathcal{O}(z^4)$$

What does this tell us about EFT?

$$G'_O(z) = \frac{a_1}{\Lambda^2} + \frac{(a_2 - a_1^2)}{\Lambda^4} z + \frac{a_1^3 - 2a_1a_2 + a_3}{\Lambda^6} z^2 + \frac{a_4 - 2a_1a_3 - a_2^2 + 3a_1^2a_2 - a_1^4}{\Lambda^8} z^3 + \mathcal{O}(z^4)$$

assuming no subtractions

Linear Positivity Bounds:

N = 0

$$\begin{aligned} a_1 &> 0 & a_2 > a_1^2 \\ a_1^3 - 2a_1a_2 + a_3 &> 0 \\ a_4 - 2a_1a_3 - a_2^2 + 3a_1^2a_2 - a_1^4 > 0 \end{aligned}$$

NonLinear Positivity Bounds:

$$D_2 D_0 > D_1^2 \longrightarrow a_1 a_3 - a_2^2 > 0$$

 $D_3 D_0^2 - D_1^3 + 2D_0^2 (D_2 D_0 - D_1^2) > 0 \quad \longrightarrow \quad a_4 a_1^2 - a_2^3 > 0$

All particles are elementary, but some are more elementary than others. (Abdus Salam 1960)

S-Matrix lore

I. Unitarity $S^{\dagger}S = 1$

$$|A(k)| < \alpha e^{\beta |k|}$$

- 2. Locality: Scattering Amplitude Polynomially (Exponentially) Bounded
- 3. Causality: Analytic Function of Mandelstam variables (modulo poles+cuts)
- 4. Poincare Invariance
- 5. Crossing Symmetry: Follows from above assumptions
- 6. Mass Gap: Existence of Mandelstam Triangle and Validity of Froissart Bound

Added Ingredient: Crossing Symmetry

s-channel $A + B \rightarrow C + D$ $A + \overline{D} \rightarrow C + \overline{B}$ $A - p_{1} \rightarrow C + \overline{B}$ $A - p_{2} \rightarrow C + \overline{B}$ $A - p_{2} \rightarrow C + \overline{B}$

S-matrix analyticity

Punch Line:

In a theory with a mass-gap, the 2-2 Scattering amplitude A(s,t) is an analytic function of s at fixed $t < 4m^2$ with poles and branch cuts in physical places.

 $\partial_t^n Im[A(s,t)] > 0$ Unitarity of partial waves $Im[a_l(s)] > 0$

Jin and Martin bound (1964) $|A(s,t)| < s^2$ $0 \le t < 4m^2$

We can write a dispersion relation with two subtractions!

1970's Positivity Constraints

Positivity bounds first developed around 1970 - many different statements and different methods - including ones that emphasise use of full crossing symmetry

Positivity refers to restricted requirement

$$\operatorname{Im}(a_l(s)) \ge 0 \qquad s \ge 4m^2$$

as opposed to full unitarity!

(as used for example in S-matrix bootstrap program)

$$0 \le |a_l(s)|^2 \le \operatorname{Im} a_l(s) \le 1 \qquad s \ge 4m^2$$

Focus mainly on bounds on partial waves $a_l(s)$ in 'unphysical' region $0 \le s < 4m^2$

Partial wave expansion

Partial waves can be inferred from amplitude by orthogonality of Legendre polynomials

$$A(s,t) = 16\pi \sqrt{\frac{s}{s-4m^2}} \sum_{l=0}^{\infty} (2l+1)P_l \left(1 + \frac{2t}{s-4m^2}\right) a_l(s)$$

$$a_l(s) = \frac{1}{16\pi} \sqrt{\frac{s - 4m^2}{s}} f_l(s) \qquad z = \cos\theta = 1 + \frac{2t}{(s - 4m^2)}$$

$$f_l(s) = \frac{1}{2} \int_{-1}^{1} dz \, P_l(z) A(s, z)$$

Froissart-Gribov representation

$$f_l(s) = \frac{1}{2} \int_{-1}^{1} dz \, P_l(z) A(s, z)$$

Using
$$Q_l(z) = \frac{1}{2} \int_{-1}^{1} dz' \frac{P_l(z')}{z - z'}$$
 and dispersion relation

$$f_l(s) = \frac{4}{\pi(4m^2 - s)} \int_0^\infty d\mu \, Q_l \left(-1 + \frac{2\mu}{4m^2 - s} \right) \, \text{Im}A(\mu, s)$$

l = 2, 4, 6... Odd partial waves vanish by t-u crossing symmetry

l = 0 determined by subtraction function so no obvious positivity

Froissart-Gribov representation

Using integral representation:

$$Q_l(z) = \int_0^\infty d\theta \left(z + (z^2 - 1) \cosh \theta \right)^{-l-1}$$

One can prove:

$$f_l(s) = \frac{4}{\pi(4m^2 - s)} \int_0^\infty d\mu \int_0^\infty d\theta (z(\mu) + (z(\mu)^2 - 1)\cosh\theta)^{-l-1} \text{Im}A(\mu, s)$$

$$l = 2, 4, 6 \dots$$
 $z(\mu) = -1 + \frac{2\mu}{4m^2 - s}$

Stieljes argument

 $z(\mu) = -1 + \frac{2\mu}{4m^2 - 2}$ $\sum_{l=1}^{n} \sum_{l=1}^{n} f_{l+p+q} y^p y^q =$ p = 0 q = 0 $\frac{4}{\pi(4m^2-s)} \int_0^\infty d\mu \, \int_0^\infty d\theta (z(\mu) + (z(\mu)^2 - 1)\cosh\theta)^{-l-1}$ $\left[\sum_{p=0}^{n} y^{p} \int_{0}^{\infty} d\theta (z(\mu) + (z(\mu)^{2} - 1)\cosh\theta)^{-p}\right]^{2} \operatorname{Im}A(\mu, s)$ **Positive for** $s < 4m^2$ Positive for s > 0

Totally Positive for $0 \le s < 4m^2$

Positivity of Hankel Determinant

$$\sum_{p=0}^{n} \sum_{q=0}^{n} f_{l+p+q} y^{p} y^{q} \ge 0 \qquad \qquad 0 \le s < 4m^{2}$$

'positivity of N x N Hankel matrix'

$$(F_l)_{pq} = f_{l+p+q}$$

 $\operatorname{Det}(F_l(s)) \ge 0 \qquad \qquad 0 \le s < 4m^2$

Example $f_6(s)f_2(s) \ge f_4(s)^2$

Infinite set of non-linear positivity constraints on partial waves amplitudes!!!!

2000-2020's Positivity Constraints

Key difference to 1970's

- Greater emphasis on constraints on Low energy effective theory Wilson coefficients rather than partial waves themselves
- Primarily interested in physical scattering region rather than Mandelstam triangle
- Application to theories without a mass gap (assuming weak coupling)

Scattering Amplitude Analyticity

$$\mathcal{A}_{s}(s,t) = \frac{\lambda_{s}(t)}{m^{2}-s} + \frac{\lambda_{u}(t)}{m^{2}-u} + (c_{0}(t) + c_{1}(t)s) + \frac{s}{\pi} \int_{4m^{2}} d\mu \frac{Im(A_{s}(\mu,t))}{\mu^{2}(\mu-s)} + \frac{u}{\pi} \int_{4m^{2}} d\mu \frac{Im(A_{u}(\mu,t))}{\mu^{2}(\mu-u)}$$
Poles Subtractions Branch cuts

'Improved' Scattering Amplitude Analyticity

Fixed t Stieltjes Positivity Bounds

$$\frac{1}{M!} \frac{d^M}{ds^M} \mathcal{A}'_s(2m^2 - t/2, t) = \frac{1}{\pi} \int_{\Lambda^2}^{\infty} d\mu \frac{Im\mathcal{A}_s(\mu, t) + Im\mathcal{A}_s(\mu, t)}{(\mu - 2m^2 + t/2)^{M+1}} > 0$$
$$0 \le t < 4m^2$$

$$\det_{pq} \left(\frac{1}{(M+p+q)!} \frac{d^{M+p+q}}{ds^{M+p+q}} \mathcal{A}'_s(2m^2 - t/2, t) \right) > 0$$

Even M+p+q
$$M \ge 2$$
$$0 \le t < 4m^2$$

Positivity of Goldstones and Pions

T. N. Pham and Tran N. Truong (1985)

 $\frac{1}{c^2} > 0$

 $\gamma > 0$

Consider Goldstone EFT $\mathcal{L} = -\frac{1}{2}(\partial \phi)^2 + \frac{c}{\Lambda^4}(\partial \phi)^4$

Positivity Bounds:
$$\partial_s^2 A_s = \frac{c}{\Lambda^4} > 0$$

Consider pion chiral Lagrangian

 $\mathscr{L}_{Q} = \frac{1}{32e^{2}} \operatorname{Tr}\left(\left[\partial_{\mu}MM^{\dagger}, \partial_{\nu}MM^{\dagger}\right]^{2}\right) + \frac{\gamma}{8e^{2}} \left[\operatorname{Tr}\left(\partial_{\mu}M\partial_{\mu}M^{\dagger}\right)\right]^{2}$ $T_{\pm 0}^{Q}(s,t,u) = \left(\frac{1}{e^{2}f_{\pi}^{4}}\right) \left[(s - 2m_{\pi}^{2})^{2} + (u - 2m_{\pi}^{2})^{2} - 2(t - 2m_{\pi}^{2})^{2}\right] + \frac{\gamma}{e^{2}} \frac{1}{f_{\pi}^{4}}(t - 2m_{\pi}^{2})^{2},$ $T_{00}^{Q}(s,t,u) = \frac{2\gamma}{e^{2}} \frac{1}{f_{\pi}^{4}} \left[(s - 2m_{\pi}^{2})^{2} + (t - 2m_{\pi}^{2})^{2} + (u - 2m_{\pi}^{2})^{2}\right],$

Positivity Bounds:

Positivity Bounds = (Sub)luminality

Adams et. al. 2006

For Goldstone model:

$$\mathcal{L} = -\frac{1}{2}(\partial\phi)^2 + \frac{c}{\Lambda^4}(\partial\phi)^4$$

Positivity requires: $c > \alpha c^2 > 0$

(Sub)luminality requires $c_s^2 = 1 - \frac{1}{\sqrt{2}}$

$$= 1 - \frac{c}{\Lambda^4} \dot{\phi}^2 < 1$$

Positivity of scattering time delay: c > 0

Makes sense since positivity derivation relies on Analyticity=Causality

Crossing is Simple!!

Dispersion Relation with Positivity along <u>BOTH</u> cuts

de Rham, Melville, AJT, Zhou 1706.02712

Punch line: The specific combinations:

 $\operatorname{Im}(s)$

$$\mathcal{T}^+_{\tau_1\tau_2\tau_3\tau_4}(s,\theta) = \left(\sqrt{-su}\right)^{\xi} \mathcal{S}^{S_1+S_2} \left(\mathcal{T}_{\tau_1\tau_2\tau_3\tau_4}(s,\theta) + \mathcal{T}_{\tau_1\tau_2\tau_3\tau_4}(s,-\theta)\right)$$

have the same analyticity structure as scalar scattering amplitudes!!!!!!!

 $m^{2} \quad 3m^{2} \quad 4m^{2}$ $f_{\tau_{1}\tau_{2}}(s,t) = \frac{1}{N_{S}!} \frac{\mathrm{d}^{N_{S}}}{\mathrm{d}s^{N_{S}}} \tilde{\mathcal{T}}_{\tau_{1}\tau_{2}\tau_{1}\tau_{2}}^{+}(s,t)$ $f_{\tau_{1}\tau_{2}}(v,t) = \frac{1}{\pi} \int_{4m^{2}}^{\infty} \mathrm{d}\mu \frac{\mathrm{Abs}_{s} \mathcal{T}_{\tau_{1}\tau_{2}\tau_{1}\tau_{2}}^{+}(\mu,t)}{(\mu - 2m^{2} + t/2 - v)^{N_{S}+1}} + \frac{1}{\pi} \int_{4m^{2}}^{\infty} \mathrm{d}\mu \frac{\mathrm{Abs}_{u} \mathcal{T}_{\tau_{1}\tau_{2}\tau_{1}\tau_{2}}^{+}(4m^{2} - t - \mu, t)}{(\mu - 2m^{2} + t/2 + v)^{N_{S}+1}}$

Scattering of spin states produces compact bounds!

Cheung and Remmen 2016, Alberte, de Rham, Momeni, Rumbutis, AJT 2020 $g_{\mu\nu}^{(1)} = (\eta_{\mu\nu} + h_{\mu\nu})^2, \quad g_{\mu\nu}^{(2)} = (\eta_{\mu\nu} + f_{\mu\nu})^2$

$$A_{s}(s,t,u) = A_{t}(t,s,u)$$

$$a(t) + \int_{4m^{2}}^{\infty} \frac{d\mu}{\pi(\mu-\mu_{p})^{2}} \left[\frac{(s-\mu_{p})^{2}}{\mu-s} + \frac{(u-\mu_{p})^{2}}{\mu-u} \right] \operatorname{Im}A(\mu,t)$$

$$= a(s) + \int_{4m^{2}}^{\infty} \frac{d\mu}{\pi(\mu-\mu_{p})^{2}} \left[\frac{(t-\mu_{p})^{2}}{\mu-t} + \frac{(u-\mu_{p})^{2}}{\mu-u} \right] \operatorname{Im}A(\mu,s)$$

Partial Wave Expansion

Partial wave expansion:

$$A(s,t) = F(\alpha) \frac{s^{1/2}}{(s-4m^2)^{\alpha}} \sum_{\ell=0}^{\infty} (2\ell+2\alpha) C_{\ell}^{(\alpha)}(\cos\theta) a_{\ell}(s), \quad \alpha = \frac{D-3}{2}$$

Gegenbauer polynomials

Positive spectral
Density
$$\rho_{\ell,\alpha}(\mu) = \frac{F(\alpha)}{(\mu - \mu_p)^3} \frac{\mu^{1/2}}{(\mu - 4m^2)^{\alpha}} (2\ell + 2\alpha) \operatorname{Im} a_{\ell}(\mu) C_{\ell}^{(\alpha)}(1)$$
$$\geq 0$$

Ratios of amplitude coefficients can be written in terms of moments, e.g.

Defining moments:
$$\langle\!\langle X(\mu,l)\rangle\!\rangle = \frac{\sum_{\ell} \int d\mu \rho_{\ell,\alpha}(\mu) X(\mu,l)}{\sum_{\ell} \int d\mu \rho_{\ell,\alpha}(\mu)}$$

Defining amplitude expansion coefficients:

$$f^{(2N,M)} \equiv \frac{1}{2(2N+2)!} \partial_t^M \partial_s^{2N+2} \mathcal{A}'(s,t) \big|_{s,t\to 0}$$

Using dispersion relation and partial wave expansion we infer

$$\frac{f^{(0,1)}}{f^{(0,0)}} + \left\langle\!\!\left\langle\frac{3}{2\mu}\right\rangle\!\!\right\rangle = \left\langle\!\!\left\langle\frac{2(-3+D)\ell + 2\ell^2}{(D-2)\mu}\right\rangle\!\!\right\rangle$$

Null-constraints

AJT, Wang, Zhou 2020 Caron-Huot, Van Duong 2020

$$0 = \mathcal{A}(s,t) - \mathcal{A}(t,s) = \sum_{\ell} \int d\mu \rho_{\ell,\alpha}(\mu) \left[\frac{2H_{D,\ell}st(s^2 - t^2)}{(D-2)D\mu^2} + \dots \right]$$

$$\sum_{\ell} \int d\mu \ \rho_{\ell,\alpha}(\mu) \frac{H_{D,\ell}}{\mu^2} = 0 \qquad \qquad H_{D,\ell} = \ell(\ell + D - 3)[4 - 5D - 2(3 - D)\ell + 2\ell^2]$$

From Cauchy-Schwarz:

$$\left(\frac{f^{(0,1)}}{f^{(0,0)}} + \left\langle\!\!\left\langle\frac{3}{2\mu}\right\rangle\!\!\right\rangle^2 = \left\langle\!\!\left\langle\frac{2(D-3)\ell + 2\ell^2}{(D-2)\mu}\right\rangle\!\!\right\rangle^2 \le \left\langle\!\!\left\langle\!\left(\frac{2(D-3)\ell + 2\ell^2}{(D-2)\mu}\right)^2\right\rangle\!\!\right\rangle \right\rangle$$
BUT!!!

$$(2(D-3)\ell + 2\ell^2)^2 = (5D-4)\left[2(D-3)\ell + 2\ell^2\right] + 2H_{D,\ell}$$
ZERO!!!

hence:

$$\left(\frac{f^{(0,1)}}{f^{(0,0)}} + \left<\!\!\left<\frac{3}{2\mu}\right>\!\!\right>\right)^2 \le \frac{5D-4}{D-2} \left<\!\!\left<\!\!\left<\frac{2(D-3)\ell + 2\ell^2}{(D-2)\mu^2}\right>\!\!\right>\!\!\right>$$

Two-sided bounds!!!

given:

$$\left\| \left\| \frac{2(D-3)\ell + 2\ell^2}{(D-2)\mu^2} \right\| \right\| < \frac{1}{\Lambda^2} \left\| \left\| \frac{2(D-3)\ell + 2\ell^2}{(D-2)\mu} \right\| \right\|$$

then:

$$\left(\frac{f^{(0,1)}}{f^{(0,0)}} + \left<\!\!\left<\frac{3}{2\mu}\right>\!\!\right>\right)^2 < \frac{5D-4}{(D-2)\Lambda^2} \left(\frac{f^{(0,1)}}{f^{(0,0)}} + \left<\!\!\left<\frac{3}{2\mu}\right>\!\!\right>\right)$$

$$-\frac{3}{2\Lambda^2} < \frac{f^{(0,1)}}{f^{(0,0)}} < \frac{5D-4}{(D-2)\Lambda^2}$$

Weakly Broken Galileon

AJT, Wang, Zhou 2020

see also Bellazzini et al, Positive Moments ..., 2020

Compact positivity bounds

Caron-Huot, Van Duong 2020

$$\mathcal{A}'(s,t,u) = g_2(s^2 + t^2 + u^2) + g_3(stu) + g_4(s^2 + t^2 + u^2)^2 + g_5(s^2 + t^2 + u^2)(stu) + \cdots$$

+ Much recent numerical work: Rewrite as a linear optimisation problem (extremize Wilson coefficients subject to null constraints) or variant

Compact positivity bounds and causality

Carrillo Gonzalez, de Rham, Pozsgay, AJT 'Causal Effective Field Theories' 2023

For Goldstone model:

Including massless gravity

Caron-Huot et al, Sharp Boundaries for the Swampland, 2102.08951

Key idea

Construct quantity which is not obviously positive, but is well defined for t < 0 such that the two subtraction dispersion relation can be used

Positivity of Goldstones coupled to Gravity

Caron-Huot et al, Sharp Boundaries for the Swampland, 2102.08951

Caron-Huot et al, Sharp Boundaries for the Swampland, 2021

In 4D
$$\tilde{c} > -\frac{M^2}{M_{\rm Pl}^2} 17 \log(1.7Mb_{\rm max})$$

Previously conjectured form in

Positivity Bounds and the Massless Spin-2 Pole Alberte, de Rham, Jaitly, AJT 2000

Positivity of EFT of Gravity

1

'Causality constraints on corrections to Einstein gravity'
Caron-Huot, Li, Parra-Martinez, Simmons-Duffin 2022
'Graviton partial waves and causality in higher dimensions'
Caron-Huot, Li, Parra-Martinez, Simmons-Duffin 2022
'Crossing Symmetric Spinning S-matrix Bootstrap: EFT bounds'
Chowdhury, Ghosh, Holder, Raman, Sinha 2022
'Constraints on Regge behaviour from IR physics'
de Rham, Jailty, AJT 2023

$$S = \frac{1}{16\pi G} \int d^4x \sqrt{-g} \left[R - \frac{1}{3!} \left(\alpha_3 R^{(3)} + \tilde{\alpha}_3 \tilde{R}^{(3)} \right)^{-1} de \text{ Rham, Jailty, AJ1 2023} + \frac{1}{4} \left(\alpha_4 (R^{(2)})^2 + \alpha'_4 (\tilde{R}^{(2)})^2 + 2\tilde{\alpha}_4 R^{(2)} \tilde{R}^{(2)} \right) + \dots \right] + S_{\text{matter}}$$

$$R^{(2)} = R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma}, \qquad \tilde{R}^{(2)} = R_{\mu\nu\rho\sigma}\tilde{R}^{\mu\nu\rho\sigma}, \qquad \tilde{R}_{\mu\nu\rho\sigma} \equiv \frac{1}{2}\epsilon_{\mu\nu}{}^{\alpha\beta}R_{\alpha\beta\rho\sigma}, \qquad \tilde{R}^{(3)} = R_{\mu\nu}{}^{\rho\sigma}R_{\rho\sigma}{}^{\alpha\beta}\tilde{R}_{\alpha\beta}{}^{\mu\nu}, \qquad \tilde{R}^{(3)} = R_{\mu\nu}{}^{\rho\sigma}R_{\rho\sigma}{}^{\alpha\beta}\tilde{R}_{\alpha\beta}{}^{\mu\nu}, \qquad \tilde{g}_{3} = \alpha_{3} + i\tilde{\alpha}_{3}, \qquad g_{4} = 8\pi G(\alpha_{4} + \alpha_{4}'), \qquad \tilde{g}_{4} = 8\pi G(\alpha_{4} - \alpha_{4}' + i\tilde{\alpha}_{4})$$

Caron-Huot, Li, Parra-Martinez, Simmons-Duffin 2022

- <u>Positivity Bounds</u> are <u>very powerful</u> at constraining irrelevant operators in a low energy EFT
- Full crossing symmetry implies upper and lower bounds on Wilson coefficients
- Strong constraints on interacting massive spin theories and supersoft theories
- With some assumptions can be applied to gravitational effective theories massless gravity
- Results broadly consistent with expectations of naive EFT counting/naturalness arguments

What is now proved was once, only magind.

William Blake, from 'The Marriage of Heaven and Hell'