Piecing Together a Flat Hologram

Sabrina Pasterski

Celestial Holography in 30 minutes

The Celestial Conjecture:

scattering in asymptotically flat spacetimes is dual to a CFT living on the celestial sphere

This program evolved from a **bottom-up** approach to flat holography...

... recognizing **soft theorems as Ward Identities** for asymptotic symmetries and recasting the **soft operators as currents** in a codimension 2 CFT.

Soft Thm = Ward Id

 \Leftrightarrow

 $\langle out|Q^+[Y]\mathcal{S} - \mathcal{S}Q^-[Y]|in\rangle = 0$

In Bondi gauge the metric near future null infinity takes the form

$$ds^{2} = -du^{2} - 2dudr + 2r^{2}\gamma_{z\bar{z}}dzd\bar{z} + 2\frac{m_{B}}{r}du^{2} + (rC_{zz}dz^{2} + D^{z}C_{zz}dudz + \frac{1}{r}(\frac{4}{3}N_{z} - \frac{1}{4}\partial_{z}(C_{zz}C^{zz}))dudz + c.c.) + \dots$$
Radiative Data

which is preserved by the residual diffeomorphisms

$$\xi^{+} = (1 + \frac{u}{2r})Y^{+z}\partial_{z} - \frac{u}{2r}D^{\bar{z}}D_{z}Y^{+z}\partial_{\bar{z}} - \frac{1}{2}(u+r)D_{z}Y^{+z}\partial_{r} + \frac{u}{2}D_{z}Y^{+z}\partial_{u} + c.c$$

$$+ f^{+}\partial_{u} - \frac{1}{r}(D^{z}f^{+}\partial_{z} + D^{\bar{z}}f^{+}\partial_{\bar{z}}) + D^{z}D_{z}f^{+}\partial_{r}$$
Superrotations
Supertranslations

$$8\pi GQ^{+}[Y] = \int_{\mathcal{I}^{+}} \sqrt{\gamma} d^{2}z du \left[-\frac{1}{2} D_{z}^{3} Y^{z} u \partial_{u} C^{zz} + Y^{z} T_{uz} + u D_{z} Y^{z} T_{uu} + h.c. \right]$$
$$Q^{+}[Y] = Q_{S}^{+}[Y] + Q_{H}^{+}[Y]$$

$$\langle out|a_{-}(q)\mathcal{S}|in\rangle = \left(S^{(0)-} + S^{(1)-}\right)\langle out|\mathcal{S}|in\rangle + \mathcal{O}(\omega)$$
$$S^{(0)-} = \sum_{k} \frac{(p_k \cdot \epsilon^{-})^2}{p_k \cdot q} \qquad S^{(1)-} = -i\sum_{k} \frac{p_{k\mu}\epsilon^{-\mu\nu}q^{\lambda}J_{k\lambda\nu}}{p_k \cdot q}$$

Soft Thm = Ward Id

Soft Thm = Memory

Soft Thm = Memory

IR Triangle

Soft Theorems

4D Soft Mode = 2D Current

For a particular choice of Y

$$T_{zz} = 2iQ_S^+(Y^w = \frac{1}{z - w}, Y^{\bar{w}} = 0)$$

the superrotation Ward Id takes the form of a 2D stress tensor Ward Id.

$$\langle T_{zz}\mathcal{O}_1\cdots\mathcal{O}_n\rangle = \sum_{k=1}^n \left[\frac{h_k}{(z-z_k)^2} + \frac{\Gamma_{z_k z_k}^{z_k}}{z-z_k}h_k + \frac{1}{z-z_k}\left(\partial_{z_k} - |s_k|\Omega_{z_k}\right)\right]\langle \mathcal{O}_1\cdots\mathcal{O}_n\rangle$$

the asymptotic symmetry is physical

4D Soft Mode = 2D Current

4D Amplitude = 4D Correlator

LSZ \Leftrightarrow Extrapolate Dict.

$$\langle out|S|in\rangle_{boost} = \prod_{i} \lim_{r \to \infty} \int_{-\infty}^{\infty} \mathrm{d}\nu_{i} \,\nu_{i}^{-\Delta_{i}} \,\langle r\Phi(\nu_{1}, r, z_{1}, \bar{z}_{1})...r\Phi(\nu_{n}, r, z_{n}, \bar{z}_{n})\rangle$$

$$\nu = \{u, v\}$$

4D Amplitude = 2D Correlator

4D Amplitude = 2D Correlator

4D Lorentz invariance = 2D global conformal symmetry

$$\langle \mathfrak{G}_{\Delta_1}^{\pm}(z_1, \bar{z}_1) \dots \mathfrak{G}_{\Delta_n}^{\pm}(z_n, \bar{z}_n) \rangle = \prod_{i=1}^n \int_0^\infty d\omega_i \omega_i^{\Delta_i - 1} \langle out | \mathscr{S} | in \rangle$$

If we go to a boost basis, amplitudes transform as CFT correlators under the Lorentz group.

Collinear Limit = OPE

$$\begin{split} & \mathfrak{G}_{\Delta_1,+2}(z_1,\bar{z}_1)\mathfrak{G}_{\Delta_2,+2}(z_2,\bar{z}_2) \sim -\frac{\kappa}{2}\frac{\bar{z}_{12}}{z_{12}}B(\Delta_1-1,\Delta_2-1)\mathfrak{G}_{\Delta_1+\Delta_2,+2}(z_2,\bar{z}_2) + \dots , \\ & \mathfrak{G}_{\Delta_1,+2}(z_1,\bar{z}_1)\mathfrak{G}_{\Delta_2,-2}(z_2,\bar{z}_2) \sim -\frac{\kappa}{2}\frac{\bar{z}_{12}}{z_{12}}B(\Delta_1-1,\Delta_2+3)\mathfrak{G}_{\Delta_1+\Delta_2,-2}(z_2,\bar{z}_2) \\ & - \frac{\kappa}{2}\frac{z_{12}}{\bar{z}_{12}}B(\Delta_1+3,\Delta_2-1)\mathfrak{G}_{\Delta_1+\Delta_2,+2}(z_2,\bar{z}_2) + \dots , \end{split}$$

2D Radial Quantization → **More Symmetries**

For special weights, the SL(2,C) multiplets have primary descendants.

$$H^{k}(z, \bar{z}) := \lim_{\epsilon \to 0} \epsilon \, \mathfrak{G}_{k+\epsilon,2}(z, \bar{z}), \quad \Delta = k = 2, 1, 0, -1, \dots$$

Assuming these multiplets shorten, we have

$$H^{k}(z,\bar{z}) = \sum_{m=\frac{k-2}{2}}^{\frac{2-k}{2}} \bar{z}^{-\frac{k-2}{2}-m} H^{k}_{m}(z) , \qquad \qquad w^{p}_{n} = \frac{1}{\kappa} (p-n-1)! (p+n-1)! H^{-2p+4}_{n}(z) + \frac{1}{\kappa} (p-n-1)! (p+n-1)! (p+n-1)! H^{-2p+4}_{n}(z) + \frac{1}{\kappa} (p-n-1)! (p+n-1)! (p+n-1$$

2D Radial Quantization → More Symmetries

Complexifying the celestial sphere variables and defining a holomorphic commutator

$$[A,B](z) = \frac{1}{2\pi i} \oint_z dw A(w)B(z)$$

gives a $Lw_{1+\infty}$ symmetry algebra for appropriately rescaled modes

$$\left[w_{n}^{p}, w_{m}^{q}\right](z) = \left[n(q-1) - m(p-1)\right] w_{m+n}^{p+q-2}(z)$$

Celestial Algebra = Sym of SDG

Celestial Algebra = Chiral Algebra

Do these symmetries beyond tree level, or the self-dual sector?

Can we realize them in the matter sector?

Can we really complexify the celestial sphere to define these currents?

Celestial = Carrollian

perturbative bulk

Carrollian CFT₃

Celestial = Carrollian

 $ds^2 = -c^2 dt^2 + d\vec{x}^2$

Hard Charges = Light Ray Operators

Hard Charges = Light Ray Operators

Single Particle

Exclusive

VS

Inclusive

Kevin Costello Laurent Freidel Sabrina Pasterski Perimeter Institute for Theoretical Physics

Monica Pate NYU

Nima Arkani-Hamed IAS

Tim Adamo

University of Edinburgh

Lionel Mason Oxford

Natalie Paquette University of Washington

Andrew Strominger Jordan Cotler Harvard University

Tomasz Taylor Northeastern

Andrea Puhm École Polytechnique

David Skinner Cambridge

