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Low energy states in string/M theories

3. Moduli

3.1. String compactifications
Even if a full non-perturbative understanding of string and M-theory is still lacking, it has long been understood

that at low energies there are five di↵erent limits of string theory in ten-dimensional flat space, which are related
to each other by duality transformations. The M-theory picture also leads to a sixth limit, namely 11-dimensional
supergravity, often referred to as the low-energy limit of M-theory, the still-not-fully-defined theory that encompasses
all the string theories as di↵erent limits.

What these limits have in common, and arguably the single most important physical implication of string theories,
is the existence of extra dimensions. The process of starting from a high dimensional theory and then obtaining a
four-dimensional e↵ective theory is known as compactification, and over the past 35 years string compactifications
have been studied in much detail. Starting from a 10-dimensional theory, the di↵erent fields have to be decomposed
into their components in the four non-compact dimensions and also their ones in the extra compact dimensions. For
instance, the ten dimensional graviton gMN splits into the 4-dimensional graviton gµ⌫, a set of scalar fields gmn that
correspond to moduli fields and potentially also vector fields gµn. Notice that from the 4d perspective the indices m, n
are just internal indices, as in compactification the extra dimensions are regarded as no longer directly visible from
the 4d perspective.

gMN =

 
gµ⌫ gµn
gn⌫ gmn

!
µ, ⌫ = 1, · · · , 4 ; m, n = 1, · · · , 6 (110)

A similar decomposition is performed with the higher-form antisymmetric tensors BMN , CMNP, etc present in each of
the 6 theories, with the form content of each theory shown in table .

Theory Dimension Supercharges Massless Bosons

Heterotic 10 16 gMN , BMN , �
E8 ⇥ E8 Ai j

M

Heterotic 10 16 gMN , BMN , �
S O(32) Ai j

M

Type I 10 16 gMN , �, Ai j
M

S O(32) CMN

Type IIA 10 32 gMN , BMN , �
CM ,CMNP

Type IIB 10 32 gMN , BMN , �
C,CMN ,CMNPQ

M-Theory 11 32 gMN , BMN ,CMNP

Table 4: The massless bosonic spectrum of the five string theories and of 11-dimensional supergravity. The corresponding massless fermionic
spectrum is determined by supersymmetry. Moduli fields all originate from these simple spectra in 10d, reduced on the internal manifold. There
are also matter states, which in IIA and IIB string theories come from D-brane intersections and in heterotic string theory come from solutions of
the Dirac equation with non-trivial gauge configuration. Further moduli, such as open string moduli from separation between D-branes or closed
string bundle moduli, can also be present.

The most studied compactifications are those that preserveN = 1 supersymmetry. These o↵er a greater degree of
control over the e↵ective action compared to non-supersymmetric theories, while also allowing the presence of chiral
fermions and su�cient dynamics to allow for a non-supersymmetric vacuum state.

These correspond in the case of the heterotic or type I theories to the internal space being a Calabi-Yau (CY)
manifold. These are manifolds of S U(3) holonomy (or vanishing first Chern class). Calabi-Yau manifolds are complex
Kähler manifolds, meaning that the metric can be written as a second derivative of a Kähler potential K(zi, z̄ j̄: gi j̄ =
@i@ j̄K. However since they do not have isometries, except for a few numerical examples, there are no known analytic
metrics for compact CY manifolds of complex dimension greater than one. Instead, we rely mostly on their topological
structure (and indeed, the full details of the internal metric are not needed for most parts of the 4-dimensional e↵ective
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Unique theory, no free parameters. 
Q: how to get our 4D world from it?
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zon. In this respect, flux compactification falls into the mainstream of theoretical physics,
but di↵ers from some areas of string theory, and more general mathematical physics, in
which exact methods are prevalent. At the same time, the study of flux vacua owes a great
deal to approximation schemes that are founded on systematic expansions around exact
results, e.g. using mirror symmetry or nonrenormalization, as we will see.

3 Type IIB flux compactifications

The primary class of flux compactifications surveyed in this article are compactifications
of type IIB string theory on orientifolds of Calabi-Yau threefolds. To explain this class of
solutions we will first introduce the type IIB supergravity action and the two fundamen-
tal expansions, in gs and ↵0 (§3.1). In §3.3 we introduce the central ansatz of imaginary

self-dual (ISD) three-form fluxes, and in §3.4 and §3.5 we examine the superpotential and
Kähler potential that describe ISD configurations.

The massless bosonic spectrum of type IIB string theory in ten dimensions consists of
the metric gMN , two-form B2 and dilaton � in the Neveu-Schwarz-Neveu-Schwarz sector,
and the p-form potentials C0, C2, C4 in the Ramond-Ramond sector. We define the three-
form fluxes

F3 := dC2 , H3 := dB2 , (2)

the five-form

F̃5 := dC4 +
1

2
B2 ^ F3 �

1

2
C2 ^ H3 , (3)

and the complex axiodilaton
⌧ := C0 + ie�� . (4)

The full ten-dimensional e↵ective action S for the bosonic fields can be written as
S = S10 + Sloc, with S10 a bulk action and Sloc encoding the contributions of localized
objects such as D-branes. The bulk action S(0)

10 at leading order in the gs and ↵0 expansions
is

S(0)
10 =

1

22
10

Z
p

�g

 
R �

|r⌧ |2

2 (Im ⌧)2
�

|G3|
2

12 Im ⌧
�

|F5|
2

4·5!

!
+

1

8i2
10

Z
C4 ^ G3 ^ G3

Im ⌧
, (5)

where 10 is the ten-dimensional gravitational coupling, and the Einstein-frame metric gMN

is related to the string-frame metric ĝMN by gMN =
p
Im⌧ ĝMN . The self-duality condition

F̃5 = ?10F̃5 must be imposed as a constraint in addition to the equations of motion that
follow from (5). The F̃5 Bianchi identity reads

dF̃5 = H3 ^ F3 + ⇢D3
loc . (6)

D-branes carry Ramond-Ramond charge, and in particular C4 couples to the worldvolume
of a D3-brane, which is why the source term is denoted by ⇢D3

loc: it captures the D3-

6

3.3 ISD flux compactifications

In a flux compactification,11 the metric of the internal space is not Ricci-flat, because
the stress-energy of fluxes drives deviations from the Calabi-Yau vacuum configuration.
However, in an important class of type IIB flux compactifications, the metric is conformal
to a Calabi-Yau metric, di↵ering only by a warp factor. To see this, we consider the warped
ansatz

ds2 = e2A(y) gµ⌫(x)dx
µdx⌫ + e�2A(y)gmn(y)dy

mdyn , (22)

with gmn a Riemannian metric on a compact space X6 that admits a Calabi-Yau metric
gCY

mn. In a Calabi-Yau vacuum solution, A(y) is trivial and gmn = gCY
mn on X6, whereas

in the presence of general sources, gmn is unrelated to gCY
mn. Defining the Hodge star ?

constructed from the metric gmn, one finds that ?2 = �1, so ? has eigenvalues ±i. Writing
the three-form fluxes F3 and H3 in the complex combination

G3 := F3 � ⌧H3 , (23)

with ⌧ the axiodilaton, we can decompose G3 into +i and �i eigenspaces of ?,

G± := G3 ⌥ i ?G3 , (24)

which are termed imaginary self-dual (ISD) and imaginary anti-self-dual (IASD), respec-
tively.

Consider type IIB string theory compactified on an O3/O7 orientifold of a Calabi-
Yau threefold, and containing only ISD fluxes, D3-branes, D7-branes, O3-planes, and O7-
planes, without IASD fluxes and without antibranes. Such a configuration is called an ISD
compactification.

Several key properties of ISD compactifications were recognized by Giddings, Kachru,
and Polchinski [16]. First, the Einstein equations for (22) are solved by gmn = gCY

mn with
a generally nontrivial warp factor A(y). That is, the metric e�2A(y)gmn(y) on the internal
space is conformally Calabi-Yau. Second, the classical solution at leading order in the
↵0 expansion enjoys a dilatation symmetry: the size of X6 is a modulus (see §3.5.1).
Third, generic ISD fluxes give masses to the complex structure moduli of X6, and to
the axiodilaton. This is easy to see from the ten-dimensional action,

S10 �

Z

X6

G3 ^ ?G3 , (25)

in which the Hodge star, which depends on the metric gmn, couples to the fluxes.12

Dimensional reduction of an ISD compactification leads to an N = 1 supersymmetric
e↵ective action in four dimensions. On general grounds the resulting superpotential W
and Kähler potential K depend on the moduli as

W = W (zi, Ta, ⌧) , K = K(zi, z̄i, Ta, T a, ⌧, ⌧̄) , (26)

11In this review we concentrate on fluxes of antisymmetric tensor fields. More general fluxes, including
geometric fluxes (see e.g. [30]) and non-geometric fluxes [31, 32] are possible: see the review [33].

12One might wonder how to choose quantized fluxes that are su�ciently generic to stabilize all, rather
than just some, of the complex structure moduli. We will address this below.
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Im⌧ ĝMN . The self-duality condition

F̃5 = ?10F̃5 must be imposed as a constraint in addition to the equations of motion that
follow from (5). The F̃5 Bianchi identity reads

dF̃5 = H3 ^ F3 + ⇢D3
loc . (6)

D-branes carry Ramond-Ramond charge, and in particular C4 couples to the worldvolume
of a D3-brane, which is why the source term is denoted by ⇢D3

loc: it captures the D3-

6

1 Introduction

The fundamental physical laws that govern our Universe must describe gravity and quan-
tum mechanics. To discover the laws of quantum gravity, we cannot entirely rely on
terrestrial experiments, or even on cosmological observations: the energies of observable
processes are far too low to give a complete picture, in contrast to the way that collider
experiments eventually revealed the Standard Model of particle physics. We may hope for
some guidance from experiment, but theorists will have to provide a framework.

String theory is such a framework: it is a theory of quantum gravity through which
we can take a constructive approach to exploring possible laws of quantum gravity in our
Universe. The first obstacle is that the world we observe at low energies is four-dimensional,
while the best-understood solutions of string theory are ten-dimensional. Kaluza-Klein
theory [1,2], now more than a century old, provides a way to bridge this gap. If the extra
dimensions correspond to a six-dimensional compact space that is smaller than the reach
of any experimental probe then only three spatial dimensions will be seen.

However, the size and shape of the extra dimensions are dynamical: they are parame-
terized by the expectation values of scalar fields known as moduli. Unless the moduli have
large masses, they mediate long-range forces that are not observed in our world. Thus,
a central problem of Kaluza-Klein theories is to provide a dynamical explanation for the
requisite size of the extra dimensions, and to ensure that the moduli masses are consistent
with experiment. Addressing these challenges is the main obstacle in connecting string
theory to observations, and it is the subject of this review.1

2 The vacuum problem

To understand quantum gravity in our four-dimensional, non-supersymmetric Universe, we
will study compactifications of superstring theory on six-dimensional compact spaces, and
seek solutions in which supersymmetry is broken. In this section we will carefully explain
the reasoning that directs us to the class of solutions that are the subject of this chapter:
namely, flux compactifications on orientifolds of Calabi-Yau threefolds.

To begin, we take a product ansatz for a ten-dimensional spacetime,

ds2 = gµ⌫(x)dx
µdx⌫ + gmn(y)dy

mdyn , (1)

for µ, ⌫ = 0, . . . , 3 and m,n = 4, . . . , 9. We suppose that gmn is a Riemannian metric on
some compact space2 X6. Defining the Ricci tensors Rµ⌫ and Rmn constructed from gµ⌫

and gmn, respectively, the ansatz (1) solves the ten-dimensional vacuum Einstein equations
if and only if Rµ⌫ = Rmn = 0. Thus, vacuum solutions of string theory are furnished by
Ricci-flat six-manifolds.

1For previous reviews on fluxes and the string landscape see [3–5]. For string cosmology see [6], the
recent review [7], and references therein. The geometry of string compactifications is treated in [8].

2This space may be a proper six-manifold, or it may be some more singular space on which string
theory remains well-defined, but in both cases we will use the term ‘manifold’.
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10D IIB String EFT

4D Compactifications

Vacuum solutions Flat 4D Minkowski and 
flat directions: moduli



Status of moduli stabilisation

4-cycle size: τ
(Kahler moduli)

3-cycle size: U 
(Complex structure 
moduli)

+ String Dilaton: S

4-cycle size: T 
(Kahler moduli)

3-cycle size: U 
(Complex structure 
moduli)

+ string dilaton S



IIB: 4D Moduli
10D massless spectrum:

• NSNS sector: 

• RR sector:

Compactification to 4D: moduli

• Axio-dilaton: 

• Complex structure moduli:

• Kahler moduli:
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Sources of moduli potentials

3.3. Moduli Stabilisation
The low energy e↵ective action of string theories in ten dimensions can be organised in a double expansion: the ↵0

and gs expansions. The former captures the e↵ect of integrating out heavy string modes (i.e the massive string states)
whereas the latter describes string loops. At leading order, the e↵ective low-energy actions are the ten-dimensional
supergravity theories (and 11-dimensional supergravity in the case of M-theory).

The simplest compactified vacuum configurations are those in which the internal flux fields vanish and the scalar
fields in the ten-dimensional actions are constant. As a result, the ten-dimensional matter stress-tensor vanishes,
leading to a Minkowski compactification with a Ricci flat internal manifold. A requirement that some supersymmetry
is preserved then implies that the internal manifold is a Calabi-Yau. Upon dimensional reduction, this leads to massless
(complex) scalars whose wavefunctions in the extra dimensions are given by harmonic forms on the Calabi-Yau
(Kähler deformations and axionic fields that arise from the dimensional reduction of form fields pair up as complex
scalars, whereas complex structure deformations are intrinsically complex).

As mentioned earlier, these massless scalars are disastrous for phenomenology and so construction of phenomeno-
logically viable models requires incorporating e↵ects that stabilise the moduli. This requires going beyond the sim-
plest solutions and incorporating various additional e↵ects into the e↵ective action. The analysis depends on the type
of string theory. Before getting into the details for each case, we give a qualitative description of the key ingredients.
As the appearance of moduli within simple compactifications is due to the presence of flat directions in the low energy
e↵ective field theories’ scalar potential, to lift them we need to include e↵ects that lead to a non-trivial energy profile
along these directions.

• Fluxes: A p-form flux can thread a p-cycle, ⌃p, in the internal manifold. The threading is characterised by
integers, as the Dirac quantisation condition forbids continuous deformations. The presence of background
flux can lead to a non-trivial energy profile along various directions in field space. For instance, for the overall
radius of the compactification (R), a p-form flux contributes to the potential (see [62, 54] for derivations of these
di↵erent scalings) as

V(R) / R�6�2p,

lifting the flatness of the radial direction. These fluxes are crucial to all flux compactifications, and also appear
in e.g. the maximally supersymmetric AdS 5 ⇥ S 5 solution used in the AdS/CFT correspondence [63].

• Localised objects: Space filling D-branes and orientifold planes are consistent with maximal symmetry in four
dimensions and contribute to the moduli potential. For a p-dimensional localised object, the contribution to the
potential for the radial mode scales as

V(R) / TpRp�15,

where Tp is the tension of the object. We note that this tension is negative for O-planes.

• Extra dimensional curvature: Backgrounds with non-trivial matter stress-tensors have non-vanishing curvature
in the extra dimension, which also contributes to the e↵ective potential. For the radion,

V(R) / 1
R8 ,

with a positively curved internal space making a negative contribution to the potential (e.g. in the S 5 in the
AdS/CFT AdS 5 ⇥ S 5 solution).

• ↵0 and loop corrections: The e↵ective potential receives contributions order by order in the ↵0 and gs expan-
sions. These can lift directions which are flat in the leading order approximation. For instance, the leading ↵0
correction in type IIB [64] makes a contribution to the radion potential which behaves as

V(R) / 1
R18 .

Such ↵0 corrections are crucial in e.g. the Large Volume Scenario.
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Figure 1: A plot of V vs � for the scalar potential V = U(ln �)/�4, revealing a de Sitter or anti-de
Sitter minimum separated from a runaway by a local maximum. The plots are obtained using the
representative values k1/k3 = 0.01 and k2/k3 = �0.133 (arbitrary scale). The main text describes the
precise parameter range required to get de Sitter rather than anti-de Sitter or a runaway.

where U1 = 3k1b1|w0|2 and so on. Furthermore, the Dine-Seiberg argument leads one to

expect that any minima � = �0 of this potential generically occur in the regime where �(�0) �
O(1). But if stabilization of other moduli make �g0 small, then inspection of (2.10) shows

that �0 must be very large because �g0 ln �0 � O(1).

This general argument can be made explicit purely using perturbative methods if we

arrange that the coe�cients U1, U2 and U3 appearing in the potential (2.6) with U given by

(2.11) are all positive and satisfy the mild hierarchy

����
U1

U2

���� �
����
U2

U3

���� � O(�) (2.12)

for some smallish � � 1. Such a hierarchy allows solutions to �V/�� |�0 = 0 for �0 � O(�)

and so

b1 ln �0 = ��1
g0 � ��1 (2.13)

can easily be order 1/� if � � �g0 and b1 < 0. For � <� 1/10 the value predicted for �0 can be

enormous �0 � e1/�, justifying the validity of the 1/� expansion ex post facto. As is easy to

check, when 9 U2
2 > 32 U1U3 the potential has a local minimum at �0 that is separated from

the runaway to � � � by a local maximum at �1 > �0 (see Fig. 1).

The value of the potential at this minimum is positive if U2
2 < 4 U1U3 and negative

otherwise. Although (2.11) and (2.12) might naively lead one to expect U(�0) � O(�4) when

U3 � O(1), it happens that the condition V �(�0) = 0 ensures that this leading contribution

cancels, making the result at the minimum instead U(�0) � O(�5). As a result both V (�0)

and �2(�2V/��2)
��
�0

are O(�5|w0|2/�4
0 ), and this can be extremely small given that �0 can be

– 10 –

I II III

Figure 8: Dine-Seiberg problem. The scalar potential as a function of the volume or dilaton modulus vanishes asymptotically. Since these fields
are the ↵0 and loop expansion parameters respectively, the only region in which these expansions are under full control is the runaway region III. If
there is a non trivial minimum it would naturally fall in the small volume/strong coupling region I. In order to obtain reliable minima in the desired
region II in which hierarchies and weak couplings exist (as seen in nature), compactification parameters, such as integer fluxes or ranks of gauge
groups, need to be used.

The above result has been generalised to various settings in [72, 73, 74, 75, 76]. In particular, [75] obtained a
no-go theorem for dS solutions (of any dimensionality) to all orders in the ↵0 expansion in heterotic strings (recently
this was generalised to one loop in a specific setting involving string theory without spacetime supersymmetry [77]).
Implications for other string theories follow from dualities.

Attempts to construct dS space in string theory always involve the inclusion of corrections to the e↵ective action
which allow for the evasion of the no-go theorems. That said, we note that there also exist arguments that the obstacles
to dS are deeper and more fundamental than simply the absence of particular objects in the low-energy supergravity
theory. For examples of these principled obstructions to dS, see [31, 78, 79, 80, 81] (the Swampland dS conjectures
will be discussed in Sec. 7) and also [82] for an alternative perspective.

We next discuss the generation of moduli potentials – moduli stabilisation – in various string theories. Our focus
will be on the form of the e↵ective potential and Minkowski/AdS/dS solutions in four dimensions. Time-dependent
cosmological solutions will be discussed in the later sections. We start with arguably the most developed constructions,
those of type IIB string theory.

3.4. Moduli Stabilisation: IIB
Moduli stabilisation in the context of semi-realistic vacua (i.e. incorporating hierarchies and supersymmetry break-

ing) is best understood in the context of type IIB models and we start by discussing these models. In type IIB, for a
special (albeit large) choice of the fluxes and localised sources, one has the knowledge of ten-dimensional solutions
which incorporate the backreaction of fluxes. These fluxes also stabilise the dilaton and complex structure moduli.
This class is often referred to as pseudo-BPS. We discuss these following [83, 84, 85] (see e.g. [86, 87, 88] for earlier
work). The construction of these solutions starts by considering an orientifolded Calabi-Yau (all field configurations
and fluctuations are required to be consistent with the orientifolding, for details see [89]). The 3-form fluxes of the
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Quick Overview of Flux compactifications
• Tree-level Kahler potential:

• Tree-level superpotential:

• Flux quantisation:
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Ansatz for the Kähler potential. Conditions:

• It is at most quadratic in the fibre coordinates ⇣.

• It reduces to the sum of separate Kähler potentials for the base and

the fibre in the limit of trivial fibration. With the base having volume

V3 and the fibre with volume v0.

• Scale out the dimensionality of the coordinates by their relevant length

scale v
1
2
0 for the fibre coordinates and V

1
6
3 for the base coordinates.

• Keep the dimensionality two of K by scaling an overall factor of v
1
2
0 V

1
6
3

that will be carried to the metric and guarantee that the overall volume

of the manifold is given by v0V3

Then the Kähler potential can be written as:

K(z, z̄, ⇣, ⇣̄) = v
1
2
0 V

1
6
3

⇥
A(z, z̄)✏�1 +B(z, z̄)(⇣ + ⇣̄) + C(z, z̄)(⇣ + ⇣̄)2✏

⇤
(5)

with A,B,C so far arbitrary functions that may be constrained later on. A is

the Kähler potential of the base and if B,C are constants this would reduce

to the Kähler potential for the product manifold for a trivial fibration.

✏ ⌘
v102

V
1
6
3

(6)

1



compute the structure of �V . It takes schematically the form [37]:

�V / W
2
0 �K +W0�W (2.11)

If there were only one single expansion parameter and if, as usual, W0 � �W and �K �

�W (since perturbative terms dominate over non-perturbative terms at weak couplings),

the first term would be the leading order term. It would lift the potential but would

give rise to a runaway behaviour, unless di↵erent order terms compete to give rise to a

minimum which would happen only if the perturbative expansion breaks down and the

corresponding expansion parameter is not small. This is the Dine-Seiberg problem [61].

Flux compactifications in IIB allow two ways to overcome this issue. First, in the KKLT

scenario the big discrete degeneracy of flux vacua is used in such a way that W0 is tuned

to W0 ⇠ �W = Wnp. This then requires �W
2 terms to be also included in the expansion

stabilising the Ti fields when they compete with the W0�W terms. Notice that in this limit

the first term in �V above is of order �W 3 and is then subdominant. Justifying neglecting

quantum corrections to the Kähler potential.

In LVS the fact that there are more than one expansion parameters plays the key role.

In this case the two terms in equation (2.10) can compete with each other to provide a

minimum as long as each comes from a di↵erent expansion. In this case �K ⇠ W0�W which

for �K ⇠ 1/V and �W ⇠ e
�a⌧ implies that the volume is exponentially large V ⇠ e

a⌧ . Here

⌧ is usually a blow-up mode that gets stabilised to values of order 1/gs which is large at

weak string coupling gs and therefore the volume is exponentially large.

In summary KKLT requires tuning of the fluxes for W0 ⌧ 1 whereas LVS works for

standard values of W0 ⇠ O(1 � 100) (as it is found in concrete examples [117, 131]) but

depends more on the perturbative corrections to K. Notice that from the e
K factor in the

general expression for V the order of V0 is V0 ⇠ M
4
p /V

2
⇠ M

4
s whereas in LVS the order

of �V is �V ⇠ W
2
0M

4
p /V

3
⇠ M

2
sm

2
3/2 ⌧ M

4
s . Having V0 vanishing at the minimum and

�V ⌧ M
4
s supports the validity of using the EFT at scales below Ms.

2.2.2 Advantages

We would like here to emphasise several advantages of type IIB constructions:

1. Controlled flux backreaction: Background fluxes can be turned on to generate a po-

tential for the moduli in a controlled way since their backreaction on the internal

geometry just renders the compactification manifold conformally Calabi-Yau. There-

fore the understanding of the underlying moduli space is better than in other string

theories. Some progress has been made recently in computing the form of the Kähler

potential including the e↵ect of warping [62–69]. Notice that the warping induces

corrections to the definition of the correct moduli coordinates which are however

negligible at large volume.

2. Suppressed scalar potential scale: The starting point of dS models is the classical

low-energy limit of type IIB string theory compactified on an orientifold of a Calabi-

Yau threefold X. This is a controlled procedure if the compactification volume V ⌘
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• S,U,T Moduli

• Quantum corrections
• Three options:  (i)

(ii)

(iii)

In IIB string theory flux compactifications [125, 126] naturally fix the value of all the

complex structure moduli Ua and the dilaton S and reduce the number of vacua from a con-

tinuum to a discrete but large set of points determined by the quantised three-form fluxes.

In both DRS (Dasgupta, Rajesh, Sethi) ([125]) and GKP (Giddings, Kachru, Polchinski)

[126] we have flux stabilisation of the complex structure moduli and the dilaton of a con-

struction involving a Calabi-Yau orientifold X with internal G3 fluxes. While in both cases

the (static) solution requires that the fluxes are ISD (imaginary self-dual i.e. ⇤6G3 = iG3)

which is compatible with the Hodge decomposition G3 2 (2, 1)� (0, 3). Supersymmetry is

preserved only if there is no (0, 3) component as considered in DRS.

Kähler moduli Ti are not stabilised by the fluxes nor any perturbative e↵ect. The

reason behind this is the fact that there exists a Peccei-Quinn synmetry Ti ! Ti+ ici with

constant cis that together with the holomorphicity of the superpotential forbids any Ti

dependence of W to all orders in perturbation theory. However these moduli are the gauge

couplings for matter fields localised in D7 branes and therefore standard non-perturbative

e↵ects generate a superpotential for these fields. The total superpotential for closed string

moduli is

W = Wflux(S,U) +Wnp(S,U, T ). (2.4)

The source of non-perturbative e↵ects are Euclidean brane instantons and non-perturbative

dynamics in the field theory of D7 or D3 branes such as the condensation of gauginos in the

gauge sector of the D brane. In the past decade there has been substantial progress in the

understanding and computational control of Euclidean D brane instantons [127]. Gaugino

condensation, being a dynamical e↵ect, has been well understood from the standard 4d

e↵ective field theory (EFT) but it is more di�cult to study from the full 10d e↵ective

action and the full string theory.

V = e
K
⇣
K

�1
ab̄

DaWDb̄W

⌘
� 0 (2.5)

The starting point of the 4D EFT is the F-term 4d supergravity scalar potential for arbi-

trary superpotential W (�M ) and Kähler potential K(�M , �̄M̄ ) in units of Mp:

VF = e
K
⇣
K

�1
MN

DMWDMW � 3|W |
2
⌘

(2.6)

The tree-level Kähler potential for the Kähler moduli satisfies the celebrated no-scale prop-

erty K
�1
i|̄ KiK|̄ = 3 which is just a consequence of the homogeneity of V. Using this and

the fact that the flux superpotential does not depend on the Ti fields, it implies a positive

definite scalar potential for S and U and stabilises them supersymmetrically by solving

DUaW = DSW = 0. As long as these equations have solutions for di↵erent values of the

quantised fluxes they will generate the huge number of solutions that define the string land-

scape but at this stage the Kähler moduli Ti have a completely flat potential that vanishes

for all values of the fields even for those that break supersymmetry DTW ⇠ KTW0 6= 0.

Two main scenarios have emerged to fix the Kähler moduli: the original KKLT [15]

and the Large Volume [36, 37] (LVS) scenarios. Both start from the flux superpotential,
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quantised fluxes they will generate the huge number of solutions that define the string land-

scape but at this stage the Kähler moduli Ti have a completely flat potential that vanishes

for all values of the fields even for those that break supersymmetry DTW ⇠ KTW0 6= 0.

– 5 –

In IIB string theory flux compactifications [125, 126] naturally fix the value of all the

complex structure moduli Ua and the dilaton S and reduce the number of vacua from a con-

tinuum to a discrete but large set of points determined by the quantised three-form fluxes.

In both DRS (Dasgupta, Rajesh, Sethi) ([125]) and GKP (Giddings, Kachru, Polchinski)

[126] we have flux stabilisation of the complex structure moduli and the dilaton of a con-

struction involving a Calabi-Yau orientifold X with internal G3 fluxes. While in both cases

the (static) solution requires that the fluxes are ISD (imaginary self-dual i.e. ⇤6G3 = iG3)

which is compatible with the Hodge decomposition G3 2 (2, 1)� (0, 3). Supersymmetry is

preserved only if there is no (0, 3) component as considered in DRS.

Kähler moduli Ti are not stabilised by the fluxes nor any perturbative e↵ect. The

reason behind this is the fact that there exists a Peccei-Quinn synmetry Ti ! Ti+ ici with

constant cis that together with the holomorphicity of the superpotential forbids any Ti

dependence of W to all orders in perturbation theory. However these moduli are the gauge

couplings for matter fields localised in D7 branes and therefore standard non-perturbative

e↵ects generate a superpotential for these fields. The total superpotential for closed string

moduli is

W = Wflux(S,U) +Wnp(S,U, T ). (2.4)

The source of non-perturbative e↵ects are Euclidean brane instantons and non-perturbative

dynamics in the field theory of D7 or D3 branes such as the condensation of gauginos in the

gauge sector of the D brane. In the past decade there has been substantial progress in the

understanding and computational control of Euclidean D brane instantons [127]. Gaugino

condensation, being a dynamical e↵ect, has been well understood from the standard 4d

e↵ective field theory (EFT) but it is more di�cult to study from the full 10d e↵ective

action and the full string theory.

Wtree = Wflux(U, S) (2.5)

VF = e
K
⇣
K

�1
ab̄

DaWDb̄W

⌘
� 0 (2.6)

The starting point of the 4D EFT is the F-term 4d supergravity scalar potential for arbi-

trary superpotential W (�M ) and Kähler potential K(�M , �̄M̄ ) in units of Mp:

VF = e
K
⇣
K

�1
MN

DMWDMW � 3|W |
2
⌘

(2.7)

The tree-level Kähler potential for the Kähler moduli satisfies the celebrated no-scale prop-

erty K
�1
i|̄ KiK|̄ = 3 which is just a consequence of the homogeneity of V. Using this and

the fact that the flux superpotential does not depend on the Ti fields, it implies a positive

definite scalar potential for S and U and stabilises them supersymmetrically by solving

DUaW = DSW = 0. As long as these equations have solutions for di↵erent values of the

quantised fluxes they will generate the huge number of solutions that define the string land-

scape but at this stage the Kähler moduli Ti have a completely flat potential that vanishes

for all values of the fields even for those that break supersymmetry DTW ⇠ KTW0 6= 0.

– 5 –

compute the structure of �V . It takes schematically the form [37]:

�V / W
2
0 �K +W0�W (2.11)

If there were only one single expansion parameter and if, as usual, W0 � �W and �K �

�W (since perturbative terms dominate over non-perturbative terms at weak couplings),

the first term would be the leading order term. It would lift the potential but would

give rise to a runaway behaviour, unless di↵erent order terms compete to give rise to a

minimum which would happen only if the perturbative expansion breaks down and the

corresponding expansion parameter is not small. This is the Dine-Seiberg problem [61].

Flux compactifications in IIB allow two ways to overcome this issue. First, in the KKLT

scenario the big discrete degeneracy of flux vacua is used in such a way that W0 is tuned

to W0 ⇠ �W = Wnp. This then requires �W
2 terms to be also included in the expansion

stabilising the Ti fields when they compete with the W0�W terms. Notice that in this limit

the first term in �V above is of order �W 3 and is then subdominant. Justifying neglecting

quantum corrections to the Kähler potential.

In LVS the fact that there are more than one expansion parameters plays the key role.

In this case the two terms in equation (2.10) can compete with each other to provide a

minimum as long as each comes from a di↵erent expansion. In this case �K ⇠ W0�W which

for �K ⇠ 1/V and �W ⇠ e
�a⌧ implies that the volume is exponentially large V ⇠ e

a⌧ . Here

⌧ is usually a blow-up mode that gets stabilised to values of order 1/gs which is large at

weak string coupling gs and therefore the volume is exponentially large.

In summary KKLT requires tuning of the fluxes for W0 ⌧ 1 whereas LVS works for

standard values of W0 ⇠ O(1 � 100) (as it is found in concrete examples [117, 131]) but

depends more on the perturbative corrections to K. Notice that from the e
K factor in the

general expression for V the order of V0 is V0 ⇠ M
4
p /V

2
⇠ M

4
s whereas in LVS the order

of �V is �V ⇠ W
2
0M

4
p /V

3
⇠ M

2
sm

2
3/2 ⌧ M

4
s . Having V0 vanishing at the minimum and

�V ⌧ M
4
s supports the validity of using the EFT at scales below Ms.

2.2.2 Advantages

We would like here to emphasise several advantages of type IIB constructions:

1. Controlled flux backreaction: Background fluxes can be turned on to generate a po-

tential for the moduli in a controlled way since their backreaction on the internal

geometry just renders the compactification manifold conformally Calabi-Yau. There-

fore the understanding of the underlying moduli space is better than in other string

theories. Some progress has been made recently in computing the form of the Kähler

potential including the e↵ect of warping [62–69]. Notice that the warping induces

corrections to the definition of the correct moduli coordinates which are however

negligible at large volume.

2. Suppressed scalar potential scale: The starting point of dS models is the classical

low-energy limit of type IIB string theory compactified on an orientifold of a Calabi-

Yau threefold X. This is a controlled procedure if the compactification volume V ⌘
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No-scale
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Figure 1: Description of a deformed conifold with 3-form fluxes (a KS throat) embedded

in a compact geometry, with anti-D3-branes trapped at the tip of the throat. Beyond the

throat, the compactifications may include other ingredients, like D7-branes wrapped on

4-cycles, etc, which are not relevant for the generation of the warp factor on the throat,

but may lead to other interesting effects (like non-perturbative superpotentials).

embeds it into different possible compactification manifolds. This approach separates

the local properties of the models, such as the gauge group, the massless matter

spectrum, running of gauge coupling, etc, from properties depending strongly on the

global features of the compactification, such as supersymmetry breaking, scalar field

potentials, etc.

A large class of local D-brane configurations leading to chiral 4d world-volume

gauge sectors is provided by D3-branes (or D3-branes) at singularities. It is thus

natural to combine techniques of model building with D3-branes at singularities

with the construction of highly warped throats using deformed conifolds with fluxes.

Indeed in this paper we construct explicit geometries containing deformed conifolds,

and orbifold singularities sitting at the corresponding 3-spheres. Introduction of an

explicit set of suitable 3-form fluxes leads to a warped throat, with the compact

3-cycles and the orbifold singularity at its tip. Finally introducing a set of D3-branes

and D7-branes (all dynamically trapped at the tip of the throat) at the orbifold

3

Moduli Stabilisation in IIB String Theory

1 Effective Field Theory of KKLMMT Revisited

Please check the next set of arguments:

V = K�1
0

����
@W

@X

����
2

=
|⇢|2

K0
� 0 (1.1)

W = W0 +Wmatter +Wnp + ⇢X (1.2)

Vuplift =
|⇢|2

c(T + T ⇤)n+3
(1.3)

Vuplift =
D2

(T + T ⇤)↵
=

D2

V2↵/3

⇢
↵ = 3 KKLT
↵ = 2 KKLMMT

(1.4)

z1/3 = eA = e�
2⇡K
3gsM ⌘ e�↵

(1.5)

4̄
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G3

W =

Z
G ^ ⌦ (1.6)

Wnp =
X

Aie
�aiTi (1.7)

1. Recall that a probe brane in a D-brane background is described by the combination of the

DBI and WZ actions:

S = �T3

Z
d4x

p
�g

✓
1

h

p
1� hgµ⌫@µr@⌫r �

q

h

◆
(1.8)

where the first term comes from the DBI action and the second term from the Chern-Simons

action
R
Ctx1x2x3 . For a D3 brane q = 1 the non-derivative interaction cancels as should be

for BPS states. For a brane/antibrane system, q = �1 the two terms add and give rise to the

vacuum energy plus Coulomb interactions. So reading h�1
gives us the interaction.

We all agree with the eqs. 3.2 and 3.3 in my latest notes. But the scaling that introduced the

volume dependence in the warp factor also acts on the 5-form F5 = dC4 + · · · which is the

one that gives the potential for the antibrane. Let us follow KKLMMT as close as possible.

As we know, in the presence of fluxes the 10D metric is of the form:

ds210 = e2A⌘µ⌫dx
µdx⌫ + e�2Agmndy

mdyn (1.9)

The 5-form field strength F5 = dC4 + ... is:

(F5)rtx1x2x3 =
@e4A

@r
(1.10)

Rescaling the 6d metric by gmn ! �gmn is compensated by e2A ! �e2A which for � = V1/3

is what introduces the V1/3
factor in the 4d part of the metric and gives rise to the famous

V�4/3
in the uplift term. But this also scales the solution for C4 by C4 ! �2C4. Recall that

this is the source of the brane antibrane coupling determined by h�1
with h�1 = e4A. So

1



Embedding in CY compactification with Standard Model brane

ED3/D7	

D3	

D3	
T	

Figure 1: Global embedding of a local oriented quiver coming from fractional D3 branes at
singularities. The action of the orientifold involution is represented by the dashed line. The
involution exchanges two identical quivers. An additional del Pezzo divisor can support
either an ED3-instanton or a D7 stack with gaugino condensation. Due to the presence
of non-zero gauge fluxes, the large four-cycle tends to be wrapped by a hidden D7 stack
(T-brane) which is responsible for a dS vacuum.

size. The four-cycles in the geometric regime which are transversally invariant can be either

del Pezzo divisors supporting non-perturbative e↵ects or large cycles wrapped by a hidden

D7 T-brane stack which is responsible for achieving a dS vacuum [7].

On the other hand, Fig. 2 and 3 show two di↵erent possible global embeddings of ori-

entifolded quivers. In both cases the fractional D3 branes sit at an orientifolded singularity

obtained by D-term fixing and the large cycle is wrapped by a hidden D7 T-brane stack.

The only di↵erence is in the behaviour under the involution of the two del Pezzo divisors

in the geometric regime which are wrapped by ED3-instantons: in Fig. 2 they are transver-

sally invariant, and so they give rise to standard O(1) instantons, while in Fig. 3 they are

exchanged under the involution, leading to a U(1) instanton (for a review see [8]). Due to

the technical di�culty to deal with U(1) instantons, in this paper we shall focus only on

the case depicted in Fig. 2. Due to the presence of two del Pezzo divisors in the geometric

regime, such a model is also suitable to drive inflation, as we show in our explicit example:

one of these blow-up modes can play the rôle of the inflaton while the other can keep the

volume mode stable throughout the whole inflationary dynamics [9]. Our model, therefore,

represents an explicit Calabi-Yau compactification with both a chiral visible sector and a

successful inflationary dynamics.

This paper is organised as follows. In Sec. 2 we describe the details of the local model

and the corresponding orientifolded quiver while in Sec. 3 we first list the consistency

conditions for a successful global embedding and then we present a concrete Calabi-Yau

example with an explicit choice of orientifold evolution, D-brane setup and gauge fluxes.

Sec. 4 provides a systematic analysis of all the e↵ects which lead to full closed string moduli
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Figure 2: Global embedding of an orientifolded quiver. The action of the orientifold
involution is represented by the dashed line. The two del Pezzo divisors in the geometric
regime support ED3-instantons while the large four-cycle is wrapped by a hidden D7 stack
(T-brane) which is responsible for a dS vacuum. Both the ED3-instantons and the D7
T-brane wrap invariant divisors.

ED3	

D3	

ED3	

T	

Figure 3: Global embedding of an orientifolded quiver. The action of the orientifold is
represented by the dashed line. The two del Pezzo divisors in the geometric regime are
wrapped by ED3-instantons which are exchanged under the involution, and so lead to a
U(1) instanton. The large (orientifold invariant) cycle is instead wrapped by a D7 T-brane
stack that gives rise to a dS vacuum.

stabilisation in a Minkowski (or slightly dS) vacuum. In Sec. 5 we then perform a complete

multi-field analysis to show how our model can also successfully drive inflation. We finally

present our conclusions in Sec. 6.
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stabilisation in a Minkowski (or slightly dS) vacuum. In Sec. 5 we then perform a complete

multi-field analysis to show how our model can also successfully drive inflation. We finally

present our conclusions in Sec. 6.
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Cicoli et al 2017,2021

De Sitter + … from String Theory !!

Active debate for many years: ‘full control’?



The String Landscape and Dark Energy

• Anthropic prediction 𝜦~𝟏𝟎_𝟏𝟐𝟎 (Weinberg 1987)

• Evidence for Dark Energy (1998)

• Concrete proposal (Bousso-Polchinski 2000)

• Explicit String realizations (KKLT, LVS,… 2003+)*

The worst solution to the dark energy problem with the exception of all the others!!! 

(see however, C.P. Burgess and FQ 2111.07286 )

https://arxiv.org/abs/2111.07286


String Inflation
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Figure 3: An illustration of the standard picture of slow-roll inflation ending in fast roll of the inflation to a minimum and subsequent reheating of
the universe.

that is, the overall pressure of the universe should be negative p < �⇢/3, which corresponds to a violation of the strong
energy condition (SEC).2This occurs in neither radiation nor matter dominated phases (for which p = ⇢/3, p = 0
respectively). However, one simple energy source that can drive inflation is the positive potential energy of a single
(canonically normalised) scalar field with negligible kinetic energy. As we will encounter later, other alternatives are
also possible.

2.3.1. Slow-roll conditions
Let us consider a single (canonically normalised) scalar field, the inflaton, with potential energy V , coupled to

gravity. Its action reads

S =
Z

d4x
p�g

"
1

8⇡G4

R4

2
� 1

2
@µ' @

µ' � V(')
#
. (30)

Although the inflaton can in principle depend on both time and space, inflation rapidly smooths out spatial variations,
and thus for the background evolution, it su�ces to study3 ' = '(t). In a spatially flat FLRW spacetime (1) the
variation of the action (30) with respect to ' gives

'̈ + 3H'̇ + V,' = 0 . (31)

The energy momentum tensor of the field derived from (30) gives

Tµ⌫ = @µ'@⌫' � gµ⌫
"
1
2

(@')2 + V(')
#
. (32)

In the flat FLRW background, the energy density and pressure of the scalar are found to be

⇢' =
1
2
'̇2 + V(') , (33a)

p' =
1
2
'̇2 � V(') . (33b)

2The SEC for a perfect fluid states that ⇢ + p � 0 [9].
3The spatial dependence will be relevant later for the quantum fluctuations of the inflaton.
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4.2.5. Single-field String Inflation and Cosmological Observables
After presenting a brief description of several examples of single-field models of string inflation, let us now

summarise and compare their predictions for two main cosmological observables, the scalar spectral index ns and the
tensor-to-scalar ratio r, evaluated at the benchmark point Ne ' 52. These predictions are listed in Tab. 4.

String model ns r
Fibre Inflation 0.967 0.007

Blow-up Inflation 0.961 10�10

Poly-instanton Inflation 0.958 10�5

Aligned Natural Inflation 0.960 0.098
N-Flation 0.960 0.13

Axion Monodromy 0.971 0.083
D7 Fluxbrane Inflation 0.981 5 ⇥ 10�6

Wilson line Inflation 0.971 10�8

D3-D3 Inflation 0.968 10�7

Inflection Point Inflation 0.923 10�6

D3-D7 Inflation 0.981 10�6

Racetrack Inflation 0.942 10�8

Volume Inflation 0.965 10�9

DBI Inflation 0.923 10�7

Table 4: Comparison among the predictions for the scalar spectral index and the tensor-to-scalar ratio of the main models of string inflation,
evaluated as a benchmark point at Ne ' 52.

Note that there is a relatively small number of inflaton candidates among all open and closed string moduli and
most have been used in concrete proposals of string inflation. Note also that as per the scientific tradition, more than
half of them are already in tension with the latest experimental bounds on ns and r. Models such as axion monodromy
and fibre inflation will be further tested in the planned experiments for the next 5-10 years.

Let us stress that we focused just on a restricted list of single-field models which represent the most developed
classes of string inflationary scenarios. A broader ensemble of di↵erent models is present in the literature, even
if most of them are just string-inspired, or supergravity-inspired, since they are based on ideas coming from string
theory but are still lacking a solid stringy embedding or a detailed mechanism for moduli stabilisation. Just to name
some of these examples, let us mention M-flation [580, 581, 582, 583], ↵-attractor models [584, 585, 586, 587, 588],
sequestered inflation [589, 590], axion inflation on a steep potential due to dissipation from gauge field production
[591, 592], and chromonatural inflation [593].

4.3. Multi-Field Inflation
So far our discussion has been restricted to the case where the inflation proceeds along either a single direction

– such as a closed string modulus, the radial direction of a D-brane moving in the 6-dimensional compact space, a
single Wilson line, or a single combination of axions – or with predictions that are e↵ectively single-field, such as
racetrack inflation. Indeed models are usually designed this way, with all the non-inflaton fields sitting in their local
minima as the inflaton rolls. This has the obvious advantage of simplicity, besides being e↵ective in describing the
primordial fluctuations, which are approximately scale invariant, statistically Gaussian, isotropic and homogeneous to
high degree.

Going beyond this simple picture, however, is not only well motivated from an observational point of view, as
future experiments may reveal interesting or unexpected physics (such as non-gaussianities, anisotropies, inhomo-
geneities), but also from a theoretical perspective. In particular, in string compactifications, moduli (spin-0) fields are
ubiquitous, while spin-1 fields also enter in the process of moduli stabilisation (see Sec. 3.3).

Thus a generic feature of string inflation models is that a significant number of moduli and/or spin-1 fields, with
a range of masses, may be dynamically active during inflation. Their dynamics can thus contribute to the inflationary
mechanism at the level of background or fluctuation evolution, and can leave imprints on the properties of scalar as
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Challenges: eta problem, scales (KL problem), moduli stabilisation, observations?
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1 Introduction

The new data release from BICEP/Keck considerably strengthened bounds on the tensor to

scalar ratio r [1]: r0.05 = 0.014+0.010
�0.011 (r0.05 < 0.036 at 95% confidence). The main results

are illustrated in [1] by a figure describing combined constraints on ns and r, which we

reproduce here in Fig. 1. These new results have important implications for the development

of inflationary cosmology. In particular, the standard version of natural inflation as well as

the full class of monomial potentials V ⇠ �n are now strongly disfavored.

Figure 1: BICEP/Keck results for ns and r [1]. The 1� and 2� areas are represented by dark blue and light

blue colors. The purple region shows natural inflation, and the orange band corresponds to inflation driven by

scalar field with canonical kinetic terms and monomial potentials.
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ABSTRACT
We present cosmological parameter results from the final full-mission Planck measurements of the cosmic microwave background (CMB) an-
isotropies, combining information from the temperature and polarization maps and the lensing reconstruction. Compared to the 2015 results,
improved measurements of large-scale polarization allow the reionization optical depth to be measured with higher precision, leading to signifi-
cant gains in the precision of other correlated parameters. Improved modelling of the small-scale polarization leads to more robust constraints on
many parameters, with residual modelling uncertainties estimated to a↵ect them only at the 0.5� level. We find good consistency with the standard
spatially-flat 6-parameter ⇤CDM cosmology having a power-law spectrum of adiabatic scalar perturbations (denoted “base⇤CDM” in this paper),
from polarization, temperature, and lensing, separately and in combination. A combined analysis gives dark matter density ⌦ch2 = 0.120 ± 0.001,
baryon density ⌦bh2 = 0.0224 ± 0.0001, scalar spectral index ns = 0.965 ± 0.004, and optical depth ⌧ = 0.054 ± 0.007 (in this abstract we quote
68 % confidence regions on measured parameters and 95 % on upper limits). The angular acoustic scale is measured to 0.03 % precision, with
100✓⇤ = 1.0411± 0.0003. These results are only weakly dependent on the cosmological model and remain stable, with somewhat increased errors,
in many commonly considered extensions. Assuming the base-⇤CDM cosmology, the inferred (model-dependent) late-Universe parameters are:
Hubble constant H0 = (67.4±0.5) km s�1Mpc�1; matter density parameter⌦m = 0.315±0.007; and matter fluctuation amplitude�8 = 0.811±0.006.
We find no compelling evidence for extensions to the base-⇤CDM model. Combining with baryon acoustic oscillation (BAO) measurements (and
considering single-parameter extensions) we constrain the e↵ective extra relativistic degrees of freedom to be Ne↵ = 2.99±0.17, in agreement with
the Standard Model prediction Ne↵ = 3.046, and find that the neutrino mass is tightly constrained to

P
m⌫ < 0.12 eV. The CMB spectra continue

to prefer higher lensing amplitudes than predicted in base ⇤CDM at over 2�, which pulls some parameters that a↵ect the lensing amplitude away
from the ⇤CDM model; however, this is not supported by the lensing reconstruction or (in models that also change the background geometry)
BAO data. The joint constraint with BAO measurements on spatial curvature is consistent with a flat universe,⌦K = 0.001±0.002. Also combining
with Type Ia supernovae (SNe), the dark-energy equation of state parameter is measured to be w0 = �1.03 ± 0.03, consistent with a cosmological
constant. We find no evidence for deviations from a purely power-law primordial spectrum, and combining with data from BAO, BICEP2, and
Keck Array data, we place a limit on the tensor-to-scalar ratio r0.002 < 0.06. Standard big-bang nucleosynthesis predictions for the helium and
deuterium abundances for the base-⇤CDM cosmology are in excellent agreement with observations. The Planck base-⇤CDM results are in good
agreement with BAO, SNe, and some galaxy lensing observations, but in slight tension with the Dark Energy Survey’s combined-probe results
including galaxy clustering (which prefers lower fluctuation amplitudes or matter density parameters), and in significant, 3.6�, tension with local
measurements of the Hubble constant (which prefer a higher value). Simple model extensions that can partially resolve these tensions are not
favoured by the Planck data.

Key words. Cosmology: observations – Cosmology: theory – Cosmic background radiation – cosmological parameters
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After String Inflation



5. Post-Inflation

This section refers to physics that originates between the end of inflation and the start of the thermal Hot Big Bang.
It begins with the universe still dominated by the vacuum energy of inflation, but now moving away from slow-roll as
the inflationary epoch terminates. It ends as the universe settles into the Hot Big Bang: a radiation-dominated epoch
with the energy density predominantly in relativistic thermalised Standard Model degrees of freedom. In this section,
we focus on what happened between these two eras. This is not a comprehensive review of all aspects of cosmology
in this epoch. Instead, we focus on those aspects where stringy physics is especially relevant. Readers interested in a
more general treatment of the standard cosmology can consult e.g. [650, 4], while an earlier discussion of aspects of
moduli physics in this epoch is [651] and a review of non-standard expansion histories is [652].

While it is true that there exists a ‘standard’ cosmological account of reheating, involving a rapid transfer of energy
from inflationary degrees of freedom to relativistic Standard Model degrees of freedom, in string theory cosmologies
there are no strong reasons to expect this standard account to hold. Although some aspects of the standard cosmology
may be preserved in some string theory models, the standard cosmology may be modified in (at least) three ways.
First, through the existence of large field displacements between the end of inflation and the final vacuum. Second, in
there being no necessary relationship between the inflaton field and the field responsible for reheating. Third, through
the expectation of a long moduli-dominated epoch in the universe culminating in moduli-driven reheating. These
possibilities are illustrated in Fig. 21. In addition, UV complete string models may connect aspects of early universe
and particle physics that otherwise appear uncorrelated.

V(!)

!!min

"! ≤ $!

"! ≈ &'$!

(1016 GeV)4

inflation

kination

Moduli 
domination
and reheating

V ≈ e-!"

Scaled by  
≈ 1030

Figure 21: A cartoon of one way moduli and stringy physics can substantially modify the post-inflationary history of the universe. Following a
period of inflation at relatively high energies, several epochs may occur prior to the start of the Hot Big Bang. We show here the case of a kination
epoch followed by moduli domination leading to late reheating. Note the large range of scales that may arise in the scalar potential and the scalar
field displacement. In particular, the barrier after the minimum may be 20 (or more) orders of magnitude smaller than the energy scale during
inflation (Vbarrier ' 10�20Vinf ).

5.1. The Standard Cosmology
We start with a brief review of the ‘standard’ account of post-inflationary cosmology. During the inflationary

epoch, the universe was dominated by the vacuum energy density of a scalar field and the evolution of the universe
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5.1. Moduli Domination
In expanding universes, matter and radiation redshift as

⇢matter /
1

a(t)3 ,

⇢radiation /
1

a(t)4 , (152)

and so matter wins out over radiation. Although both familiar and basic, Eq. (152) implicitly contains one of
the most important elements of string cosmology. As discussed in section XXREFXX, moduli originate from
higher-dimensional modes of the graviton and interact through gravitationally suppressed couplings. On dimensional
grounds, the decay rates of such moduli are set as

�� =
�

16⇡
m3
�

M2
P
, (153)

where � is a dimensionless O(1) constant, whereas particle with renormalisable perturbative decays have decay rates
given by Eq. (150). Compared to these, the lifetimes of the scalar moduli are enhanced by a factor of M2

P
m2
�

. Indeed,
as the Planck scale is the silverback gorilla of energy scales in physics, moduli also outlive other particles with non-
renormalisable interactions suppressed by (merely) the GUT scale.

When heavy particles decay, their decay products are normally relativistic. With radiation redshifting as ⇢� ⇠ a�4

and matter redshifting as ⇢ ⇠ a�3, the relativistic products from ‘early’ decays rapidly grow sub-dominant to any
matter present. With the evolution of cosmic time, a universe crowded with particles inevitably becomes dominated
by the longest-living, latest-decaying matter. As gravity is, both empirically and theoretically, the weakest force, this
implies that it is a generic expectation of string compactifications that the universe will go through a stage where its
energy density is dominated by the mass-energy of moduli particles for which all interactions are non-renormalisable
and suppressed by the Planck scale.

This era of moduli domination is one of the most generic and distinctive expectations of string cosmology, and it is
one of the most notable ways in which string cosmology di↵ers quite substantially from many field theory approaches
to inflation where reheating is assumed to be driven by fields with couplings that are either renormalisable or, at least,
suppressed by scales far lower than the Planck scale. While not strictly unique to string theory (the key feature is the
presence of massive scalars with gravitational-strength interactions), it represents a very di↵erent cosmological history
to many Beyond-the-Standard-Model post-inflationary scenarios, which involve a rapid transfer of energy from the
inflationary degrees of freedom into Standard Model particles.

Sometimes string theory is seen as an esoteric UV issue of little interest to hard-working practical-minded cos-
mologists studying the universe one trillionth of a second after the Big Bang. It is, therefore, important to note that
the cosmology of such field theory scenarios is unstable to the inclusion of a sector with only gravitationally coupled
particles (i.e. moduli). As described above, as long as there is some initial amplitude in the moduli fields, we expect
this energy density to grow so that the universe passes through an epoch of moduli domination.

Naively, one may think it possible to avoid this by assuming that the inflaton is charged only under Standard
Model degrees of freedom, and that all inflationary dynamics only involves a displacement in the inflaton field. The
claim is that, in this case, there would be no amplitude in the moduli degrees of freedom or, put another way, the
post-inflation moduli would not be displaced from their final minimum during inflation. However, in practice it is
very hard to engineer this: in the context of any e↵ective Lagrangian with a UV completion in string theory, there
will almost always be an initial displacement of the moduli from the final minimum, and thus some amplitude in the
moduli field. This is particularly so for the universal moduli – the overall volume and the dilaton.

Why? We illustrate this in the context of IIB compactifications, but the argument extends easily. The supergravity
scalar potential is (with MP = 1)

V = eK
⇣
Ki j̄DiWDj̄W̄ � 3|W |2

⌘
. (154)

The Kähler potential is

K = �2 lnV(T + T̄ ) � ln
 Z

i⌦ ^ ⌦̄
!
� ln(S + S̄ ), (155)
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Here the initial condition has been set as �(t0) = �0. The residual integration constant has been fixed by requiring
that a time coordinate of t = 0 represents (at least formally) an initial singularity where the energy densities diverge.
It is worth noting that during kination, the field moves through approximately one Planckian distance in field space
each Hubble time. This is an interesting feature from the perspective of string cosmology, as transPlanckian field
excursions are home territory for string theory and require a theory of quantum gravity to ensure adequate control of
the e↵ective field theory expansion over such large displacements. Any extended kination epoch, lasting for many
Hubble times, will result in a field traversing a markedly transPlanckian distance.

The scale factor behaves as
a(t) / t1/3, (180)

which follows immediately from H2 ⌘ ȧ(t)2

a(t)2 =
�̇2

6M2
P
. During a kination epoch, the energy density therefore drops o↵ as

⇢kination(t) / 1
a(t)6 . (181)

By comparing with ⇢ / a�3 or ⇢ / a�4 (behaviours of matter and radiation domination), we see that kinetic energy
dilutes much faster. This implies that during a fast-rolling kination phase, any initial sources of matter or radiation
will – over time – catch up with the kination energy. At this point, their additional Hubble friction can e↵ectively stop
the evolution of the field (it becomes overdamped) until the energy densities of the universe have fallen su�ciently
for the slope of the potential to become important again.

At this point, the evolution enter an attractor tracker solution. The ‘attractor’ nature refers to the fact that many
initial conditions converge onto the same solution. The ‘tracker’ property refers to the fact that fixed proportions
of the energy density lie in each of potential energy, kinetic energy and radiation (or matter) (28; 296; 297). The
use of tracker solutions, and additional Hubble friction to avoid overshoot, goes back a long way (for example, see
(298; 299; 300; 301; 302; 303)).

We now describe the properties of the tracker solution (mostly following the analysis of (297)). The existence of
the tracker solution relies on the presence additional contributions to energy density which redshift slower than kinetic
energy. For a generic cosmic fluid with equation of state

P = (� � 1)⇢, ⇢ ⇠ a�3�,

and so a slower redshift than kinetic energy requires � < 2. Both matter and radiation satisfy this condition. Given
the high inflationary scales, there does not appear to be an obvious candidate for stable matter at the end of inflation
(although, as possibilities, one could consider either primordial black holes or relatively heavy axions with ma < H,
which become non-relativistic shortly after the end of inflation).

Instead, we focus on the relatively universal case of initial radiation, where ⇢extra = ⇢� (note we use ⇢� to denote
any form of radiation, not just photons). There are many good candidates for such radiation (for example, gravitons,
axion-like particles or extra U(1) gauge bosons).

The Friedmann equations are

Ḣ = � 1
2M2

P

⇣
⇢� + P� + �̇2

⌘
= � 1

2M2
P

⇣
�⇢� + �̇

2
⌘
, (182)

H2 =
1

3M2
P

⇣
⇢� +

1
2
�̇2 + V(�)

⌘
, (183)

with energy conservation set by
⇢̇� = �3H

�
⇢� + P�

�
= �3H�⇢�. (184)

The attractor nature is made manifest by transforming to the variables

x =
�̇

MP

1
p

6H
, y =

r
V(�)

3
1

MPH
. (185)
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Figure 13: Four snapshots of the energy density in a 2d simulation for our LVS blow-up modulus
example at a = 1.26, a = 2, a = 3.02 and a = 4.02. Clearly, asymmetric oscillons are formed
at a ⇠ 3. Videos of the simulations can be found here [59].
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GW spectrum: KKLT
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Figure 15: Spectrum of Gravitational waves ⌦GW,e(k) as a function of the physical momentum
a
�1

k. The spectrum is shown at di↵erent moments in time which correspond to: the end
of linear preheating at a ' 1.16 (blue), shortly after the beginning of the non-linear regime
at a ' 1.45 (green), at a ' 2.1 (orange), and at the end of the simulation a ' 2.5 (red).

oscillons do not produce GW. One possible reason for the (yet) absent peaky structure
could be that the latter is simply hidden by the stochastic background produced during
and shortly after the tachyonic oscillations. This background is produced once during
the early stage of preheating and is subsequently redshifted due to the expansion of the
Universe. Oscillons, however, are an active source of GW production until they decay. If
they live for a su�ciently long period and e�ciently produce GWs, the peaky structure in
the spectrum of GWs will eventually become visible at some later stage of the evolution.
The final spectrum shown in Figure 15 (red curve), is not expected to be the final result
since oscillons continue to be produced. If the universe would instantly reheat at that
time the frequencies of the plateau (corresponding to a

�1
k/m ⇠ 0.1 � 1 in Figure 15)

would lie today at

f0 ⇠ 108 Hz� 109 Hz , with ⌦GW,0 ⇠ 10�10
� 5⇥ 10�10

. (57)

Similar as in KKLT, an overall rescaling of the potential from complex structure moduli
which is smaller than unity would also lead to lower frequencies. Altering, other model
parameters could in principle also alter the frequencies of the stochastic GW background.
Furthermore, the volume modulus being the lightest modulus in this scenario, will at
some point start to dominate the energy density of the Universe. This, in turn, leads to
an additional period of matter domination and thus pushing not only the frequencies but
also ⌦GW,0 to lower values.

4 Conclusions and open questions

Moduli fields may be the only stringy remnants that survive at low energies and partic-
ularly after a period of inflation. It is usually stated that the dilution e↵ect of inflation
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levitated sensors
bulk acoustic wave

interferometers magnetic conversion

Neutron stars
Primordial BHs
Exotic compact objects
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Figure 2: Examples of coherent sources of GWs. The green bands correspond to the frequency ranges probed by
levitated sensors, bulk acoustic wave devices and magnetic conversion detectors respectively, while the cyan band
corresponds to the frequency range probed by interferometers. See text for details.

• For mergers of compact objects, i.e. primordial BHs (Sec. 3.2.2) and exotic compact objects
(Sec. 3.2.3) we take the masses of both merging partners to be equal and estimate the
maximal signal by determining for each frequency the maximal mass contributing to mergers
at this frequency (i.e. the mass corresponding to f = fISCO in Eq. (19) or Eq. (29)). For
the frequency range depicted, this corresponds to the mass range (10�9, 1)M� for primordial
BHs. For exotic compact objects, we vary the compactness as 5 ⇥ 10�2 < C < 1/2. The
amplitude of the oscillating GW signal is then given by Eqs. (21) and (30), respectively.

• For signals from axion superradiance we consider both the axion annihilation and axion decay
channel (see Sec. 3.2.4). The frequency of the signal is determined by the axion mass, which
is turn linked to the BH mass by the superradiance condition in Eq. (31). Inserting this into
Eq. (33) and Eq. (35) and taking ↵/l = 1/2, ✏ = 10�3 and MBH > M� yields the curves
depicted.

3.2 Late Universe

In this section we revise a number of sources that are relevant for high-frequency GW production
and are active in the late Universe. For a summary of these sources see Fig. 2 and Tab. 2 in
App. A.

3.2.1 Neutron star mergers

For not too high binary masses the merger of two neutron stars avoids the prompt collapse to a
BH and leads to the formation of a massive rapidly rotating and oscillating neutron star remnant.
The oscillations of this remnant are very characteristic of the incompletely known equation of state
of high-density matter and generate GW emission in the kHz range (see Fig. 3). For instance, the
dominant oscillation frequency of the post-merger phase (fpeak in Fig. 3) scales tightly with the
radii of non-rotating neutron stars [19]. These radii are uniquely determined by the equation of
state of neutron stars, and are therefore particularly valuable messengers of the underlying high-
density matter physics (see e.g. [20] for a review). Simulation results show a tight correlation
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physics model. In this context, I will show how in string theory there are some natural mechanisms that can 
lead to an enhancement or a suppression of cosmological GW signals, and I will analyse each source taking 
these into account. From the experimental point of view, I will propose a new GW detection concept based on 
the heterodyne detection method [38], which is routinely used in radio receiver circuits, and employed in all 
modern radio receivers. The crucial advantage of this concept is that the power measured by the photon detec-
tor would be linear in the GW amplitude, contrary to what happens in the currently existing detectors that are 
sensitive to the square of the GW amplitude. As the typical GW amplitudes can be as small as ~10-35 in the 
UHF band, the improvement in the sensitivity can potentially be significant. 
Part 1: Ultra-High-Frequency Gravitational Wave Sources 
Part 1 of this project is devoted to a systematic study of the theoretical aspects of both late and early 
Universe sources and to the analysis of the detection prospects with the experimental concepts available. 
Part 1a: Early Universe Sources 

 
The 

weakness of gravity is a source 
of joy and torment: on the one hand, it is 
responsible for the fact that GWs can go 
through the early Universe’s plasma 
unaltered, delivering a snapshot of the 
Universe’s state at the time of production. On 
the other hand, it also implies that to produce 
detectable GWs, violent events must occur, 
involving high energy densities and 
relativistic speeds. The paradigmatic example 
in the late Universe is provided by BH mer-
gers: the densest objects are smashed together reaching a 
speed close to that of light in the last phases of the merger. Eq. 1 is the equation of motionj for the metric 
perturbations hij in a Friedman-Robertson-Walker background, that obey the transverse traceless (TT) condi-
tions and represent the two GW polarizations while Πij is the anisotropic stress-energy tensor [39]. There are 
two ways to generate GWs in the early Universe [40]: i) through the amplification of vacuum fluctuations, 
with Πij = 0; ii) through a large classical source of tensor modes, in which case Πij ≠ 0. Case i) is the inflationary 
mechanism for the generation of tensor perturbations, that might be detected in the CMB. In this project I will 
focus on case ii). While the Universe’s history before BBN is unknown, it is widely believed, based on our 
current knowledge of quantum field theory, thermodynamics and GR, that many events potentially producing 
a large source term in Eq. 1 might have occurred in this era. Remarkably, most of these events are also crucial 
to driving the Universe to its current state, for instance i) phase transitions [41], which occur any time the 
Universe changes its vacuum state, ii) the formation of topological defects [41], that can be produced during 
phase transitions, iii) evaporating PBHs [42], which produce gravitons through Hawking radiation, iv) the 
thermal production of GWs [43-45], which is the GW analogue of CMB and v) baryogenesis [46], i.e. the 
production of the asymmetry between matter and antimatter that we observe today, and in many scenarios 
leads to GW production. One paradigmatic example of GW production mechanism acting immediately after 
the end of inflationk (see Fig. 1) and subject of my studies, is preheating. After inflation, the energy density 
stored in the inflaton has to be transferred to the SM degrees of freedom. This can happen slowly, through the 
perturbative decay of the inflaton, or violently, through non-perturbative effects. The latter case is called 
preheating: it occurs in a plethora of BSM models and sources GWs. During such a stage, dense clumps of 
scalar field called oscillons [54] can form and remain meta-stable. Fig. 4 reports three time-slices from a pre-
heating simulation for a monodromy inflation model [47], where red/blue regions have less/more than average 
energy density. The leftmost slice contains only primordial perturbations as obtained from inflation, while in 
the other two slices large energy density oscillons are formed. These generate large gradients (due to non-
sphericity) that produce a large Πij term and source GWs [40]. I will analyse other GW production mechanisms, 
some of which are listed in Fig. 3,l in the detailed description of the work packages. In Fig. 3 [27], the regions 
below the dotted line illustrate the region that may be covered by the corresponding source for appropriate 
parameter choices. For these sources, it is crucial to come up with precise and physically sound targets, in 
order to guide the work on detector concepts. Below, I will give more details on the detectors in Fig. 3.	 

 
j Derivatives are taken with respect to conformal time, G is the gravitational constant and a is the scale factor. 
k Inflation is a postulated period of accelerated expansion taking place before radiation domination, see Fig. 1. 
l Note that we will discuss some of the detectors appearing in Fig. 3 and 5 in a subsequent section. 
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 Figure 3: early Universe sources and detectors' sensitivities. 
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Vacuum transitions in the Landscape

1. Transition between two minima of scalar potential

2. No scalar field: M1 to M1+Wall+M2
Brown-Teitelboim 87

Coleman-De Luccia 1980

Both realised in string landscape 
Populating the String Landscape.

Motivations

• How is it populated? 

Eternal inflation is not enough.

• Starting from a given de Sitter, is it possible 

 to up-tunnel?

V = e− nχ
Mχ V0(ϕ) + V1(χ)

V0(ϕ) = μ4
ϕ ( ϕ2

M2
ϕ

− 1)
2

V1(χ) = μ4
χ [−e−2χ/Mχ + ae−χ/Mχ + be−3χ/Mχ]

V

χ

ϕ

[Aguirre, Johnsons, Larfors, ’09, ’10]

Approximate 
picture

T

V

Figure 1: A plot of V vs � for the scalar potential V = U(ln �)/�4, revealing a de Sitter or anti-de
Sitter minimum separated from a runaway by a local maximum. The plots are obtained using the
representative values k1/k3 = 0.01 and k2/k3 = �0.133 (arbitrary scale). The main text describes the
precise parameter range required to get de Sitter rather than anti-de Sitter or a runaway.

where U1 = 3k1b1|w0|2 and so on. Furthermore, the Dine-Seiberg argument leads one to

expect that any minima � = �0 of this potential generically occur in the regime where �(�0) �
O(1). But if stabilization of other moduli make �g0 small, then inspection of (2.10) shows

that �0 must be very large because �g0 ln �0 � O(1).

This general argument can be made explicit purely using perturbative methods if we

arrange that the coe�cients U1, U2 and U3 appearing in the potential (2.6) with U given by

(2.11) are all positive and satisfy the mild hierarchy

����
U1

U2

���� �
����
U2

U3

���� � O(�) (2.12)

for some smallish � � 1. Such a hierarchy allows solutions to �V/�� |�0 = 0 for �0 � O(�)

and so

b1 ln �0 = ��1
g0 � ��1 (2.13)

can easily be order 1/� if � � �g0 and b1 < 0. For � <� 1/10 the value predicted for �0 can be

enormous �0 � e1/�, justifying the validity of the 1/� expansion ex post facto. As is easy to

check, when 9 U2
2 > 32 U1U3 the potential has a local minimum at �0 that is separated from

the runaway to � � � by a local maximum at �1 > �0 (see Fig. 1).

The value of the potential at this minimum is positive if U2
2 < 4 U1U3 and negative

otherwise. Although (2.11) and (2.12) might naively lead one to expect U(�0) � O(�4) when

U3 � O(1), it happens that the condition V �(�0) = 0 ensures that this leading contribution

cancels, making the result at the minimum instead U(�0) � O(�5). As a result both V (�0)

and �2(�2V/��2)
��
�0

are O(�5|w0|2/�4
0 ), and this can be extremely small given that �0 can be

– 10 –

!

"

Figure 12: Vacuum transitions in string theory. First bubble nucleation from flux/D3 brane charge transitions illustrated by the vertical arrow.
Then a CDL-like transition crossing the potential barrier illustrated by the horizontal line. In string theory this transition may correspond towards
decompactification.

describe the bubble and its evolution. This symmetry automatically include Schwarzschild black holes solutions with
a given mass parameter M. As long as M , 0 the up-tunneling from Minkowski is allowed. Recent generalisations of
this result have been developed [381, 382]. The Hamiltonian approach is so far very much restricted to the extreme
thin-wall approximation and further developments need to be performed to include scalar potentials with di↵erent
minima. The calculations are also performed in the global dS slicing that when studying the further evolution of the
bubble wall fits with a closed rather than open universe. This put at least into question the general claim from the
Euclidean approach that the universe within the bubble has to correspond to an open universe. This is an important
point for the string landscape since if the open universe claim holds in general, it may be conceivable to rule out the
full string landscape if in the future is found that the universe is not open [383, 384, 385]. This subject needs further
studies before arriving to a concrete conclusion.

Transitions in string scenarios
In string theory we may consider the scenarios discussed in the previous sections. First we should point out that

there can be at least two di↵erent types of transitions:

1. Transitions of the Brown-Teitelboim type corresponding to transitions among vacua corresponding to the dif-
ferent quantised fluxes. Concretely, given two vacua with values of three-form fluxes Hmnp, Fmnp in terms of
integers (K,M). For a transition from a (K,M) vacuum to a (K0,M0) vacuum, a brane carrying D3-brane charges
(K � K0,M �M0) can be nucleated to mediate between the two vacua. These are precisely D5 (or NS5 ) branes
that can wrap the 3-cycles carrying the fluxes and with the remaining 2 spatial dimensions corresponding to an
S 2 wall separating the two di↵erent 4-dimensional vacua.

This provides an elegant string theory implementation of the 4-dimensional vacuum nucleation picture. It fits
nicely in the sense that D3 and D7 branes being BPS and codimension 4 have been used to host the Stan-
dard Model and/or hidden sectors, whereas D5-branes do not play a direct role as long as supersymmetry is
preserved (since supersymmetry requires codimension 4 branes). But D5-branes naturally couple to 3-forms
and furthermore the extra dimensions nicely fit with the dimension of a wall separating di↵erent 4-dimensional
vacua. From the 4-dimensional EFT, there is not a scalar potential which connects the two vacua so this cannot
be explicitly described in terms of the CDL bounce solution within the 4-dimensional EFT. But it fits nicely in
the BT formalism.
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Predictions from the landscape?

• Bubble nucleations imply open universe!

• Not possible to tunnel up from Minkowski
nor anti de Sitter.



Early History

• Coleman de Luccia (1980)

• Witten (1981)

• Vilenkin + Hartle-Hawking (1982-3)

• Brown-Teitelboim (1987)

• Farhi-Guth-Guven (1990)

• Fischler-Morgan-Polchinski (1990)



Hamiltonian Approach

not be an inconsistency since both states can be pure3. Also, even though the instanton

calculation of FGG involves a singular configuration, the FMP Hamiltonian calculation

has no such problem. Thus we believe that the latter should be taken seriously and as we

pointed out above the thermodynamic issues it presents should be addressed as above.

In this paper we also generalise the FMP argument away from the turning point of the

tunnelling trajectory. This enables us to show the relation to the well-known arguments

due to HH and Vilenkin for di↵erent wave functions for creating dS spaces from ‘nothing’4.

Indeed in the case of the dS to dS transitions there is no initial turning point very much like

the case of tunnelling from ‘nothing’. Also this general discussion resolves the issue related

to the sign of the exponent of the wave function (mentioned for instance by Bachlech-

ner [15]) in that the usual (CDL/BT) tunnelling arguments are recovered from the general

solution to the WDW equation by picking the dominant term in both the numerator and

the denominator of the ratio defining the relative probability.

In the next Section we start by reviewing the Hamiltonian formalism used by FMP. We

introduce the transition amplitudes in terms of relative probabilities and discuss the di↵er-

ent cases of transition among dS and Minkowski spacetimes. We finish the Section with a

summary comparing the value of the di↵erent amplitudes for up- and down-tunnelling. In

Sec. 3 we generalise the formalism by computing the wave functions away from the turning

points that allows us to properly study the wave function in the regions under and outside

the barrier. This is also relevant since the pre-factor of the semi-classical wave function

usually blows up at the turning points. The issue of the dominant components of the wave

functions contributing to the transition amplitude are addressed. Sec. 4 is dedicated to

comparison with other approaches to the Minkowski to dS transition. We address several

concerns that have been raised over the years questioning the validity of the FGG proposal.

We conclude that the FGG proposal survives the di↵erent challenges and it is robust. In

particular we address explicitly the consistency with AdS/CFT and detailed balance. We

present our conclusions in Sec. 5.

2 Vacuum transitions in the Hamiltonian formalism

2.1 Summary of the Hamiltonian formalism

We consider spherically symmetric configurations so that the metric in four dimensions

take the form

ds
2 = �N

2
t (t, r)dt

2 + L
2(t, r)(dr +Nrdt)

2 +R
2(t, r)d⌦2

2 , (2.1)

where as usual, d⌦2
2 = d✓

2 + sin2 ✓ d�2, ✓ and � being the angular coordinates on the

two-sphere. In the case of a single wall separating two domains, the total action is

Stot =
1

16⇡G

Z

M

d
4
x
p
gR+

1

8⇡G

Z

@M

d
3
y

p
hK + Smat + SW ⌘

⌘ SEH + SK + Smat + SW , (2.2)

3We thank Steve Shenker for pointing out this argument.
4For recent discussions of the di↵erent proposals for the ‘wave function of the universe’ in terms of

solutions to the WDW equation see [17] and [18].
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where @M is a time-like boundary, K is the extrinsic curvature and h is the metric induced

on the boundary. SK is the Gibbons-Hawking boundary term that needs to be added to

SEH in order to recover the correct field equation of motion when applying the variational

principle. In the above metric the bulk Einstein-Hilbert action becomes5

SEH =
1

2G

Z
drdt


2

Nt

(NrLR)0(Ṙ�NrR
0)� 2

Nt

@t(LR)(Ṙ�NrR
0)+

+
2

L
(NtR)0R0 +

Nt

L
(L2 �R

02) +
L

Nt

(Ṙ�NrR
0)2

�
. (2.3)

The canonically conjugate variables to L, R and the Hamiltonian and momentum of the

gravity theory are

⇡L =
NrR

0 � Ṙ

GNt

R, ⇡R =
(NrLR)0 � @t(LR)

GNt

, (2.4)

Hg =
GL⇡

2
L

2R2
� G

R
⇡L⇡R +

1

2G

"✓
2RR

0

L

◆0

� R
02

L
� L

#
, (2.5)

Pg = R
0
⇡R � L⇡

0

L . (2.6)

We assume that the spherical brane is located at r = r̂. The induced metric6 can be written

as

hij = gµ⌫
@x

µ

@�i

@x
⌫

@�j
, h

00
= �N

2
t + L

2(Nr + ˙̂r)2 , (2.7)

and then the determinant takes the simple form

p
h = 4⇡R̂2

p
h00 , (2.8)

where the ˆ denotes that the function R(r) has been evaluated at r = r̂. Finally, the

domain wall action is

SW = �4⇡�

Z
dtdr �(r � r̂)[N2

t � L
2(Nr + ˙̂r)2]1/2 , (2.9)

where � is the tension of the wall, while the matter action is

Smat = �4⇡

Z
dtdr LNtR

2
⇢(r) , ⇢ = ⇤O ✓(r � r̂) + ⇤I ✓(r̂ � r) , (2.10)

i.e. it just includes a cosmological constant term which takes di↵erent values on the two

sides of the wall7. The Hamiltonian and momentum constraints are

H = Hg + 4⇡LR2
⇢(r) + �(r � r̂)E = 0 , (2.11)

P = Pg � �(r � r̂)p̂ = 0 , (2.12)

5In the entire paper we denote x
0 = d

dr
x and ẋ = d

dt
x.

6We choose the gauge �
0 = t, �1 = ✓, �2 = �.

7Here and in the following we denote by a subscript I the internal region such that r < r̂, while we

denote by a subscript O the outer region such that r > r̂.
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dt
x.

6We choose the gauge �
0 = t, �1 = ✓, �2 = �.

7Here and in the following we denote by a subscript I the internal region such that r < r̂, while we

denote by a subscript O the outer region such that r > r̂.

– 7 –

where @M is a time-like boundary, K is the extrinsic curvature and h is the metric induced

on the boundary. SK is the Gibbons-Hawking boundary term that needs to be added to

SEH in order to recover the correct field equation of motion when applying the variational

principle. In the above metric the bulk Einstein-Hilbert action becomes5

SEH =
1

2G

Z
drdt


2

Nt

(NrLR)0(Ṙ�NrR
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The canonically conjugate variables to L, R and the Hamiltonian and momentum of the

gravity theory are

⇡L =
NrR

0 � Ṙ

GNt

R, ⇡R =
(NrLR)0 � @t(LR)

GNt

, (2.4)

Hg =
GL⇡

2
L

2R2
� G

R
⇡L⇡R +

1

2G

"✓
2RR

0

L

◆0

� R
02

L
� L

#
, (2.5)

Pg = R
0
⇡R � L⇡

0

L . (2.6)

We assume that the spherical brane is located at r = r̂. The induced metric6 can be written

as

hij = gµ⌫
@x

µ

@�i

@x
⌫

@�j
, h

00
= �N

2
t + L

2(Nr + ˙̂r)2 , (2.7)

and then the determinant takes the simple form

p
h = 4⇡R̂2

p
h00 , (2.8)

where the ˆ denotes that the function R(r) has been evaluated at r = r̂. Finally, the

domain wall action is

SW = �4⇡�

Z
dtdr �(r � r̂)[N2

t � L
2(Nr + ˙̂r)2]1/2 , (2.9)

where � is the tension of the wall, while the matter action is

Smat = �4⇡

Z
dtdr LNtR

2
⇢(r) , ⇢ = ⇤O ✓(r � r̂) + ⇤I ✓(r̂ � r) , (2.10)

i.e. it just includes a cosmological constant term which takes di↵erent values on the two

sides of the wall7. The Hamiltonian and momentum constraints are

H = Hg + 4⇡LR2
⇢(r) + �(r � r̂)E = 0 , (2.11)

P = Pg � �(r � r̂)p̂ = 0 , (2.12)

5In the entire paper we denote x
0 = d

dr
x and ẋ = d

dt
x.

6We choose the gauge �
0 = t, �1 = ✓, �2 = �.

7Here and in the following we denote by a subscript I the internal region such that r < r̂, while we

denote by a subscript O the outer region such that r > r̂.
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not be an inconsistency since both states can be pure3. Also, even though the instanton

calculation of FGG involves a singular configuration, the FMP Hamiltonian calculation

has no such problem. Thus we believe that the latter should be taken seriously and as we

pointed out above the thermodynamic issues it presents should be addressed as above.

In this paper we also generalise the FMP argument away from the turning point of the

tunnelling trajectory. This enables us to show the relation to the well-known arguments

due to HH and Vilenkin for di↵erent wave functions for creating dS spaces from ‘nothing’4.

Indeed in the case of the dS to dS transitions there is no initial turning point very much like

the case of tunnelling from ‘nothing’. Also this general discussion resolves the issue related

to the sign of the exponent of the wave function (mentioned for instance by Bachlech-

ner [15]) in that the usual (CDL/BT) tunnelling arguments are recovered from the general

solution to the WDW equation by picking the dominant term in both the numerator and

the denominator of the ratio defining the relative probability.

In the next Section we start by reviewing the Hamiltonian formalism used by FMP. We

introduce the transition amplitudes in terms of relative probabilities and discuss the di↵er-

ent cases of transition among dS and Minkowski spacetimes. We finish the Section with a

summary comparing the value of the di↵erent amplitudes for up- and down-tunnelling. In

Sec. 3 we generalise the formalism by computing the wave functions away from the turning

points that allows us to properly study the wave function in the regions under and outside

the barrier. This is also relevant since the pre-factor of the semi-classical wave function

usually blows up at the turning points. The issue of the dominant components of the wave

functions contributing to the transition amplitude are addressed. Sec. 4 is dedicated to

comparison with other approaches to the Minkowski to dS transition. We address several

concerns that have been raised over the years questioning the validity of the FGG proposal.

We conclude that the FGG proposal survives the di↵erent challenges and it is robust. In

particular we address explicitly the consistency with AdS/CFT and detailed balance. We

present our conclusions in Sec. 5.

2 Vacuum transitions in the Hamiltonian formalism

2.1 Summary of the Hamiltonian formalism

We consider spherically symmetric configurations so that the metric in four dimensions

take the form

ds
2 = �N

2
t (t, r)dt

2 + L
2(t, r)(dr +Nrdt)

2 +R
2(t, r)d⌦2

2 , (2.1)

where as usual, d⌦2
2 = d✓

2 + sin2 ✓ d�2, ✓ and � being the angular coordinates on the

two-sphere. In the case of a single wall separating two domains, the total action is

Stot =
1

16⇡G

Z

M

d
4
x
p
gR+

1

8⇡G

Z

@M

d
3
y

p
hK + Smat + SW ⌘

⌘ SEH + SK + Smat + SW , (2.2)

3We thank Steve Shenker for pointing out this argument.
4For recent discussions of the di↵erent proposals for the ‘wave function of the universe’ in terms of

solutions to the WDW equation see [17] and [18].
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where

E =

s
p̂2

L̂2
+m2 , m = 4⇡�R̂2

, p̂ = @L/@ ˙̂r , (2.13)

and the Lagrangian can be read from Eq. (2.2). Away from the domain wall (i.e. r 6= r̂)

we have from the second constraint,

⇡R =
L

R0
⇡
0

L. (2.14)

Inserting Eq. (2.14) in Eq. (2.11) (for r 6= r̂) we get

d

dr

✓
⇡
2
L

2R

◆
=

1

2G2

d

dr

"
R

✓
R

0

L

◆2

�R+
8⇡

3
G⇢R

3

#
, (2.15)

that translates into the solution

⇡L = ⌘
R

G


R

02

L2
�A↵

�1/2
, ↵ = O, I , ⌘ = ±1 , (2.16)

A↵ = 1� 2GM↵

R
�H

2
↵R

2
, H

2
↵ =

8⇡G

3
⇤↵ , (2.17)

where M↵ is an integration constant. This of course corresponds to the general solution

to the spherically symmetric metric ansatz, i.e Schwarzschild-dS (SdS). If the constant

M↵ = 0, ⇤↵ 6= 0, we have a pure dS solution and if ⇤↵ = 0, M↵ 6= 0 we have a Schwarzschild

black hole. In the static coordinate system with R as one of the coordinates, the spherically

symmetric SdS metric takes the static form:

ds
2
↵ = �A↵(R) d⌧2 +A

�1
↵ (R) dR2 +R

2
d⌦2

2 . (2.18)

Constraints and dynamics of the wall

The constraints on the domain wall are imposed by integrating Eq. (2.11) and Eq. (2.12)

from r̂ � ✏ to r̂ + ✏ leading to

R̂

L̂
(R0(r̂ + ✏)�R

0(r̂ � ✏)) = �GE , (2.19)

⇡L(r̂ + ✏)� ⇡L(r̂ � ✏) =
p̂

L̂
= 0 , (2.20)

where to get the last equality we have transformed to the rest frame of the wall so that

p̂ = 0 and E = m = 4⇡R̂2
�. We note for future reference that in the limit  ! 0 ,

AI = AO, i.e. there is not change in the geometry in the absence of the wall. Combining

Eq. (2.20) with Eq. (2.16) and then using Eq. (2.19) gives

R
0(r̂ ± ✏)

L̂
=

1

2R̂

⇣
ÂI � ÂO

⌘
⌥ 

2
R̂ , (2.21)

where we have defined

 ⌘ 4⇡�G =
Gm

R̂2
. (2.22)

– 8 –

Spherically symmetric



e.g. dS to dS

In field theory there is a similar process, described by Colemann and De Luccia (CDL)

[1], of decay of false vacuum to true vacuum. However there is a very important di↵erence

between CDL and BT processes. The former is a field theory process which describes

tunneling between two minima of a potential and stops once the field reaches in its true

minimum. However the membrane nucleation will always be (may be) repeated for dS

(AdS) with the inside value of flux and CC now become a background configuration. In

this sense the BT process is more suitable for describing the string landscape.

The probability per unit volume per unit time for brane nucleation is given in terms

of B. In [2] one has a universal expression for B valid for any decay. The corresponding B

is given by

B = 2⇡2⇢3T + 12⇡2

(
1

⇤i

"
�i

✓
1�

⇤i

3
⇢2
◆3/2

� 1

#
�

1

⇤o

"
�o

✓
1�

⇤o

3
⇢2
◆3/2

� 1

#)
. (2.2)

Here �o/i = ±1 is determined from

�o = Sign


✏

3
�

T 2

4

�
, �i = Sign


✏

3
+

T 2

4

�
, (2.3)

T is the tension of the bubble wall and ✏ is defined as

✏ = ⇤o � ⇤i. (2.4)

It is also obvious from (2.3) that

�i � �o. (2.5)

The choice of �o/i gives many possibilities of decay. As we will see later, the choices which

are relevant to us are

�o = ±1, �i = +1. (2.6)

Here ⇢ is the size of the bubble and is determined by extremizing B,

⇢ =

(
⇤o

3
+

1

T 2


✏

3
�

T 2

4

�2)�1/2

. (2.7)

From (2.7), we get the following condition


✏

3
�

T 2

4

�2
� �

T 2⇤o

3
. (2.8)

Thus if we start with de Sitter space for which ⇤o > 0, then this condition is automatically

satisfied. However for ⇤o < 0 which is the case of AdS space, this inequality has to be

satisfied in order to have a brane nucleation.

The outcomes of the BT brane nucleation process are:
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no way to limit these disconnected sums and including them will simply make the whole

formalism ambiguous. Hence we simply set the coe�cients of such additional contributions

to the wave function to zero as being physically meaningless. We are only interested in

wave functions that can be interpreted as transitions mediated by our wall/brane and that

means we just keep the connected terms. A better understanding of this situation would

be desirable.

4.2 Euclidean approaches

Let us now compare our results with the standard Euclidean approach for tunnelling,

starting from the original CDL and BT and then with the FGG approach for the Minkowski

to dS transition.

BT/CDL

The original treatments on vacuum transitions were done following the standard instanton

techniques which are formulated in Euclidean space. Both CDL and BT formalisms are

Euclidean. Up-tunnelling dS to dS transitions are forbidden in CDL but not in BT (and

also Lee-Weinberg [24]) but Minkowski to dS transitions are forbidden in both CDL and

BT. Let us investigate the di↵erence. CDL and BT give the following expression for the

transition probability: P = e
�|2IBT|, where

IBT(R̂) =
⇡

4G

" 
✏(R̂0

�)

H
2

I

⇣
1�H

2

I
R̂

2

⌘3/2
�H

�2

I

!
�
 
✏(R̂0

+
)

H
2

O

⇣
1�H

2

O
R̂

2

⌘3/2
�H

�2

O

!
+ R̂

3

#
.

(4.5)

This expression is extremised (so that the probability is maximised) at R̂ = Ro with the

latter given by Eq. (2.42). If we substitute this into Eq. (4.5) we get

IBT(R̂ = Ro) =
⇡

2G

"⇥
(H2

O �H
2
I )

2 + 
2(H2

O +H
2
I )
⇤
Ro

4H2
OH

2
I

� 1

2

�
H

�2
I �H

�2
O

�
#
, (4.6)

which is exactly the same result as in Eq. (2.54), obtained using the Hamiltonian approach

for dS to dS transitions. When setting the initial Hubble parameter to zero, the transition

probability vanishes. As mentioned in the previous Subsection this result agrees with the

Hamiltonian approach in the absence of spacetimes disconnected to the wall. However,

this does not prevent up-transitions: the argument for this is that FMP and FGG, instead,

focused on another transition, i.e. Schwarzschild to dS and subsequently they took M ! 0.
18 The main di↵erence between the two approaches is that, taking the Minkowski limit in

the latter implies the vanishing of the term proportional to the black hole mass parameter;

thereby, the total action still remains finite, leading to a nontrivial transition probability.

Notice that away from the turning points our general expression (3.9) does not coincide

with the BT expression (4.5). However both equations are such that they reproduce the

same expression (4.6) upon minimisation and evaluation at the turning points. This is the

relevant comparison.

18Note that, in this case, the bulk action would have a term like 2GM✓(�R̂
0
+) ! 0 in the flat spacetime

limit.
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with the inverse cosine defined be be between 0 and ⇡, while ⌘ = ±1, as from Eq. (2.16)

and [I ! O] means that the integrand is the same as in the first term of Eq. (2.37), with the

subscript I substituted by O. FMP did not evaluate the boundary term in Eq. (2.38) since

the integral cannot be done analytically for M 6= 0. However the most extreme form of the

puzzle that we encounter comes from the limiting case M ! 0, i.e. dS bubble nucleation

from flat space. In this case there is no inner turning point and it is easy to calculate the

boundary integral.

Since we want to compute the relative probability for the nucleation of the spacetime

N , the action Itot must be computed at the (second) turning point. We will denote all

quantities evaluated at the turning point(s) by the subscript ‘tp’. In the cases with two

turning points, the subscript tp will denote the di↵erence between the quantity evaluated

at the second turning point and the same quantity evaluated at the first turning point,

incorporating then the background subtraction, see Sec. 2.4.

If Eq. (2.33) holds, the transition probability is given by the real part of Eq. (2.37) and

Eq. (2.38). In order to compute the tunnelling probability we need to evaluate the classical

action in Eq. (2.37) and Eq. (2.38) in each di↵erent case as we do in the next Sections.

2.3 de Sitter to de Sitter transitions

In this Section we are interested in the relative probability of nucleating a configuration

with two dS spaces joined at a wall versus the probability of having a single dS space, see

Fig. 4:

P(dS ! dS/dS�W) =
| (dS/dS�W)|2

| (dS)|2 . (2.39)

It is possible to calculate the general case of dS to dS transitions (with Hubble constants

O I
W

Figure 4: Pictorial representation of the background spacetime B and the nucleated spacetime N . The

letters O and I represent the outer and inner regions respectively, while W represents the wall that separates

the two regions.

HO and HI) using

AO = 1�H
2
OR

2
, AI = 1�H

2
I R

2
, (2.40)

V = � 1

42
R̂

2
⇥
(H2

O �H
2
I )

2 + 22(H2
O +H

2
I ) + 

4
⇤
, (2.41)

R
2
o =

42

(H2
O �H

2
I )

2 + 22(H2
O +H

2
I ) + 4

, (2.42)
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Analytic continuation from Euclidean to Lorentzian implies open universe  but just a 
“guess’’ (O(4) symmetry)



(see also [13]). As a first step towards this objective we believe it is important to revisit

the original proposals for a Minkowski to dS transition.

r = 0

I+

r = 0

I+

I�

r = 0

Figure 3: The Penrose diagram including i) the combined classical trajectory (in blue) starting with the

(a) trajectory at r = 0 that reaches a turning point, ii) the corresponding tunnelling through the wormhole

(horizontal line in orange) to an expanding bubble in trajectory (b) of the same energy, iii) its further

evolution towards infinite radius. The e↵ective spacetime corresponds to patching the two shaded regions.

The green shaded area on the right corresponds to the relevant part of the Schwarzschild spacetime and

the dashed yellow area on the left to the corresponding part of the dS spacetime.

In this paper we will address this question directly by considering the nucleation of

baby universes within the four dimensional context. We will first review the Hamiltonian

argument given by FMP [8, 9] in support of the claim of Guth and collaborators on the

creation of baby universes from behind the horizon of a black hole configuration [3, 4, 14].

While these calculations were somewhat incomplete, since a certain boundary term was

not explicitly worked out (see Sec. 2.3), in the corresponding case of transitions from dS

to dS spaces this can indeed be done and explicit formulae obtained as in [15].

Next we compare these calculations with the vacuum transition probabilities obtained

by CDL [1] and BT [2] using Euclidean instanton methods. In fact the latter paper (which

is the one used by Bousso and Polchinski [10]) is more closely related to the current inves-

tigation since it involves the nucleation of a brane as in the string theory case. We find

that while CDL/BT gives zero transition probability for up-tunnelling from flat space, the

FMP calculation (in agreement with the calculation of FGG) gives a non-vanishing prob-

ability for this. We explicitly compute this amplitude in two independent ways depending

on the way we describe Minkowski space: we consider the zero cosmological constant limit

of dS and the zero mass limit of the Schwarzschild solution. In the latter case we get a

non-vanishing result but in the former case we find a vanishing transition amplitude.

We explain this discrepancy by arguing that it is due to the use of di↵erent relative

probabilities. We interpret the CDL/BT expression as coming from the (absolute value

squared of the) ratio of the Wheeler-DeWitt (WDW) wave functions for the nucleated

spacetime configuration N to the background spacetime configuration B

P =
| N |2

| B|2
, (1.1)

– 4 –

Farhi,Guth, Guven (Euclidean) +  Fischler, Morgan, Polchinski (Hamiltonian)

the laboratory’1 (see also Blau, Guth and Guendelman (BGG) [4] and references therein).

Their analysis starts from an eternal Schwarzschild black hole (S), and involves a Euclidean

instanton that mediates the transition.

R

V e
ff

(a) (b)

Ri Ro

Region I Region II Region III

Figure 1: Pictorial representation of the e↵ective potential associated to a Schwarzschild to dS transition,

see also Fig. 7. Region I and III are the classically allowed regions for the motion of the bubble wall, while

Region II is the classically forbidden region. The horizontal lines correspond to di↵erent wall trajectories

and Ri and Ro (the subscripts ‘i’ and ‘o’ stand for ‘inner’ and ‘outer’) correspond to two classical turning

points of the wall trajectory. Type (a) is a bubble that can classically expand until R = Ri and then

collapse to a singularity. Type (b) contracts from spatial infinity, reflects o↵ the second turning point and

then expands back to infinity. In the quantum version classical trajectory (a) can tunnel to (b). In the dS

to dS transitions the first turning point disappears, see Fig. 5.

In the BGG discussion the trajectories of the bubble wall with respect to the e↵ective

potential were classified into five main types, according to the value of the mass M of

the black hole. We have omitted all but the ones relevant for our discussion since we are

ultimately interested in the M ! 0 limit. In Fig. 1 the trajectory (a) corresponds to a

bubble coming out of the white hole singularity, bouncing o↵ the turning point Ri and

then collapsing to the black hole. Trajectory (b) represents a wall coming in from infinity,

reflecting o↵ the second turning point and then expanding back to infinity. Trajectory (a)

by itself does not allow for an ever expanding universe. Trajectory (b) on the other hand

allows for a continuously expanding universe but su↵ers from the Penrose theorem in the

sense that the wall surface is an anti-trapped surface and cannot escape a singularity (see

Fig. 2). Selecting a point P on the left hand side of the wall trajectory, i.e. within the dS

patch, any pair of orthogonal ingoing geodesics either hit the singularity or past asymptotic

infinity behind the horizon of the observer on the right hand side. However, FGG argued

that tunnelling between these trajectories can result in the spontaneous nucleation of an

expanding bubble at the second turning point Ro, see Fig. 3. The important feature of

the given setup enabling type (a) trajectories to be buildable is the choice of the range

1Please note that the creation of baby universes from Minkowski should not be thought as an instability

of Minkowski spacetime since the original Minkowski spacetime remains after nucleating the dS bubble.
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Tunneling

e.g. Schwarzschild to de Sitter
(HO=0)



Transitions: Standard Lore

M1 to M2
Anti de Sitter Minkowski de Sitter

Anti de Sitter
Yes

(bound on wall 
tension)

No No

Minkowski
Yes _ No

de Sitter
Yes Yes Yes

Bubble Universe is open!



From Hamiltonian Approach
M1 to M2

Anti de Sitter Minkowski de Sitter

Anti de Sitter Yes
(bound on wall 
tension)

Yes? Yes?

Minkowski Yes _ Yes ?

de Sitter Yes Yes Yes

Bubble Universe is open, closed! 
(‘nothing’ of bubble of nothing = ‘nothing’ of creation out of nothing!?)



Conclusions

• Moduli fields: low energy remnants from string compactifications

• Inflaton candidates

• Change post-inflation cosmology

• Source string landscape: dark energy

• Vacuum transitions in landscape rich subject

• Ultra high frequency gravitational waves: the future!

• Many open questions (EFT of alternatives to inflation, Hamiltonian approach to vacuum decay, 

fully trustable de Sitter, spatial curvature of our universe…)


