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Introduction: the Importance of Small-scale Structure

To test modified DM models, SIDM,
ADM, or to interpret CDM direct
detection, indirect detection results,

usually need to know clustering on
all scales

(Note new probes — GWs, pulsar
timing, substructure lensing, 21cm —
may help?)

So what densities does DM structure
reach on the smallest scales?
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Dynamical Role of Light Neutral Leptons in Cosmology
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Historically, well-known constraints on light DM candidates from phase-space density.
conservation [the Tremaine-Gunn limit — TG79]. But what about real-space density?

e.g. measure local density around each dark matter particle, averaged on say the thermal scale; consider the
cumulative distribution of this local density (CDD), for all particles; how does this evolve with time?

Basic Hypothesis: (central) density conservation

(cf. “stable clustering” hypothesis in phase-space — Zavala & Afshordi 2014)

* matter is assembled into halos from linear fluctuations in a predictable way (PS formalism)
*itis assembled into halos with some ~ universal profile
* when halos merge, density distribution cannot drop (much?)

e.g. tidal stripping only works in dense regions

As a result, the high-density end of the CDD grows monotonically.




The usual approach: the concentration-mass-redshift relation

For boost factor etc. calculations, previous work considered halo concentration vs. mass, redshift

Problems w. concentration:
— several possible definitions beyond r./r,;,
+ profile-dependent
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Ishiyama 2014 (open squares):
measured densities for halos evolved to z=32

solid curves: halo profiles assuming mass grows
by average amount (~ 9x) between z=32 and
z=0, for various z=0 concentrations

Conclusion: The central density of the smallest
halos is ~6-8 times higher than predicted by low-
redshift concentration-mass relations
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N.B. Implications for the Boost Factor

If high DM densities are conserved to low redshift, the boost factor is 30-90 times larger than anticipated!
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N.B. Implications for the Boost Factor

Boost factors this high would rule out most annihilating SUSY WIMPs w. standard cross-sections below 1 TeV!
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So how do we explain the discrepancy between high/low-z results?

Three possibilities:

— high-z simulations wrong (unlikely at this point; multiple sims/authors, well-resolved)
— density profile of low-z halos is not NFW, but contains a denser central region

— some process causes the central density to decrease as halos evolve

Assume the latter; candidate mechanisms to reduce central density:
% major mergers?
% tidal stripping?

% minor mergers?
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Drakos+ 2019A, B: how does the halo density profile change in equal-mass mergers?

N
..\
- - %
L~ R
H N
EinLow T N

_
<

r NFWT10 R

14 %
i 4*'\ \

, =
¥ NFWT10T N3
\\'.

K

1071

NFWXSlow R N

i

NG
PO 2
/ e \‘(

Relative energy of merger

3R \
4 N
VT NFwxFast T N

[ NFWXSlow T~ \.

1‘00

(Dotted line where

density is equivalent

before/after merger)

100

7'/7)11711'1

M(< 1)/ Mo

EinHigh R
T

EinHigh T
T

1.6

1.4

1.2

F1.0

- 0.8

NFWXFast R

NFWXFast T

10° 1072 10~*

1072 1074

100 10"2 10 -

Conclusion: Typical mergers barely change the CDD; in particular, only the most violent mergers reduce it.

Drakos, Taylor, Berrouet, Robotham & Power 2019



Tidal Stripping? Central density ~ conserved down to 99% mass loss

Drakos, Taylor & Benson 2018, 2020, 2022:
Tidal stripping stratified in energy space; inside-out
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For any cuspy profile, preserves central density during
most of mass loss
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Evolution in a single case:
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Concentrations of Dark Haloes Emerge from Their Merger Histories

Kuan Wang,?* Yao-Yuan Mao,>t Andrew R. Zentner,? Johannes U. Lange,*>
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Calculating median of large sample of mergers:
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Particle Positions: ¢ = 0.0 torb
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Concentration and Scale Radius vs. Time pen, apocentrlc passage
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In test cases, see basic pattern in main system (black), but note background particles also respond (red)

So large oscillations in concentration; final density does not seem to change much, however...



Conclusions

Basic question in structure formation: what is the highest density DM ever reaches?
¢ Thinking about cumulative density distribution probably better path than concentration-mass relations

¢ Issues with concentration: profile assumed, halo/subhalo, redshift evolution, short-term oscillations...

¢ There is residual uncertainty in the maximum DM density, even in plain vanilla CDM cases
+» Still not clear if the z=0 profile wrong, or early density reduced by some unknown mechanism

¢ If high densities conserved, indirect detection constraints get much stronger...

¢ Further complications: main halos vs subhalos, relationship to initial cusp (piemand, Moore & Stadel 2005; Ishiyama, Makino &

Ebisuzaki 2010; Anderhalden & Diemand 2013; Ishiyama 2014; Polisensky & Ricotti 2015; Angulo et al. 2017; Ogiya & Hahn 2018; Colombi 2021; Delos & White 2023, Ondaro-

Mallea+ 2024), also PBH/enhanced small-scale power, dissipation...






