Speaker
Description
Recent development in the study of topological defects highlights the importance of understanding the multi-dimensional structure of bulk excitations inside a quantum system. When the bulk ground state is trivial, i.e. a product state, excitations on top of it are decoupled from each other and correspond to lower-dimensional phases and their defects within. In this talk, we will expand the discussion to invertible phases and study the bulk excitations in, for example, SPT phases, majorana chain, p + ip superconductor etc. We find that there is a one-to-one correspondence between bulk excitations inside a nontrivial invertible phase and those in a product state. For SPT phases, this can be shown using the symmetric Quantum Cellular Automaton that maps from the product state to the SPT state. In this talk, we will demonstrate the correspondence for more general invertible phases, those realizable using the Symmetry Topological-Field-Theory construction. Our demonstration is built upon a key property of topological orders: certain gapped boundary conditions of a topological bulk state have only relative distinctions but no absolute ones - they cannot be distinguished by any local experiments near the boundary.
This talk is based on a work under preparation with David Stephen and Xie Chen.
External references
- 24030090
- f9220dcf-89f7-4850-8a70-e63bfc3c26d2