Speaker
Description
It is commonly believed that logical states of quantum error-correcting codes have to be highly entangled such that codes capable of correcting more errors require more entanglement to encode a qubit. Here we show that this belief may or may not be true depending on a particular code. To this end, we characterize a tradeoff between the code distance d quantifying the number of correctable errors, and geometric entanglement of logical states quantifying their maximal overlap with product states or more general ``topologically trivial" states. The maximum overlap is shown to be exponentially small in d for three families of codes: (1) low-density parity check (LDPC) codes with commuting check operators, (2) stabilizer codes, and (3) codes with a constant encoding rate. Equivalently, the geometric entanglement of any logical state of these codes grows at least linearly with d. On the opposite side, we also show that this distance-entanglement tradeoff does not hold in general. For any constant d and k (number of logical qubits), we show there exists a family of codes such that the geometric entanglement of some logical states approaches zero in the limit of large code length.
External references
- 24050034
- d3770d96-0e03-4253-a2c0-3d9202edeafa