Speaker
Description
Quantum mechanics forbids the creation of ideal identical copies of unknown quantum systems and, as a result, copying quantum information. This fundamental and non-classical 'unclonability' feature of nature has played a central role in quantum cryptography, quantum communication and quantum computing ever since its discovery. However, unclonability is a broader concept than just the no-cloning theorem. In this talk, I will go over different notions of quantum unclonability and show how they link to many important questions and topics in quantum applications both in quantum machine learning and quantum cryptography. I will also broadly cover the link between unclonability and other fundamental concepts, such as randomness, pseudorandomness and contextuality.
External references
- 24050025
- df8620a3-cdd8-43ef-8e0b-a6ba8b98acd2