Quantum Matter

Microscopic Roadmap to a Yao-Lee Spin-Orbital LiquidConfirmed

by Hae-Young Kee (University of Toronto)

America/Toronto
PI/4-405 - Bob Room (Perimeter Institute for Theoretical Physics)

PI/4-405 - Bob Room

Perimeter Institute for Theoretical Physics

60
Description

The exactly solvable spin-1/2 Kitaev model on a honeycomb lattice has drawn significant interest, as it offers a pathway to realizing the long-sought after quantum spin liquid. Building upon the Kitaev model, Yao and Lee introduced another exactly solvable model on an unusual star lattice featuring non-abelian spinons. The additional pseudospin degrees of freedom in this model could provide greater stability against perturbations, making this model appealing. However, a mechanism to realize such an interaction in a standard honeycomb lattice remains unknown. I will present a microscopic theory to obtain the Yao-Lee model on a honeycomb lattice by utilizing strong spin-orbit coupling of anions edge-shared between two eg ions in the exchange processes. This mechanism leads to the desired bond-dependent interaction among spins rather than orbitals, unique to our model, implying that the orbitals fractionalize into gapless Majorana fermions and fermionic octupolar excitations emerge. Since the conventional Kugel-Khomskii interaction also appears, the phase diagram including these interactions using classical Monte Carlo simulations and exact diagonalization techniques will be presented. Several open questions will be also discussed.

Organised by

Chong Wang