8 February 2021 to 17 May 2021
America/Toronto timezone

Clifford algebra of the Standard Model

22 Mar 2021, 12:00


Ivan Todorov (Bulgarian Academy of Sciences, Institute for Nuclear Research)


We explore the Z2 graded product C10 = C4⊗ˆC6 (introduced by Furey) as a finite quantum algebra of the Standard Model of particle physics. The gamma matrices generating C10 are expressed in terms of left multiplication by the imaginary octonion units and the Pauli matrices. The subgroup of Spin(10) that fixes an imaginary unit (and thus allows to write O = C⊗C 3 expressing the quark-lepton splitting) is the Pati-Salam group GP S = Spin(4) × Spin(6)/Z2 ⊂ Spin(10). If we identify the preserved imaginary unit with the C6 pseudoscalar ω6 = γ1...γ6, ω2 6 = −1 (cf. the talk of Furey and Hughes), then Pex = 1 2 (1 − iω6) will play the role of the projector on the extended particle subspace including the right-handed (sterile) neutrino. We express the generators of C4 and C6 in terms of fermionic oscillators aα, a∗ α, α = 1, 2 and bj , b∗ j , j = 1, 2, 3 describing flavour and colour, respectively. The internal space observable algebra (an analog of the algebra of real functions on space-time) is then defined as the Jordan subalgebra of hermitian elements of the complexified Clifford algebra C ⊗ C10 that commute with the weak hypercharge 1 2 Y = 1 3 P3 j=1 b ∗ j bj − 1 2 P2 α=1 a ∗ αaα. We only distinguish particles from antiparticles if they have different eigenvalues of Y . Thus the sterile neutrino and antineutrino (with Y = 0) are allowed to mix into Majorana neutrinos. Restricting C10 to the particle subspace which consists of leptons with Y < 0 and quarks with Y > 0 allows a natural definition of the Higgs field Φ, the scalar of Quillen’s superconnection, as an element of C1 4, the odd part of the first factor in C`10. As an application we express the ratio mH mW of the Higgs and the W-boson masses in terms of the cosine of the theoretical Weinberg angle.
The talk is based on the paper arXiv:2010.15621v3

Presentation Materials

There are no materials yet.