Speaker
Description
A frequent theme in mathematical approaches to quantum field theory is being able to draw intuitive but rigorous pictures of particle interactions. For example, in theories like QED and QCD, Feynman diagrams can be organized into a Hopf algebra structure in such a way that models renormalization of Feynman integrals. One can draw an analogy with the role of Hopf algebras in (2+1)D topological quantum field theory, where in this second setting one can think of certain string diagrams as Feynman diagrams whose Witten-Reshetikhin-Turaev amplitudes are encoded by the representation theory of some (weak) Hopf algebra. This talk is intended to (1) be accessible to both mathematicians and physicians, (2) invite a dialogue about the meaningfulness of this analogy and (3) serve as an aperitif to the later talks.