### Speaker

### Description

We argue that generic local subregions in semiclassical quantum gravity are associated with von Neumann algebras of type II_1, extending recent work by Chandrasekaran et.al. beyond subregions bounded by Killing horizons. The subregion algebra arises as a crossed product of the type III_1 algebra of quantum fields in the subregion by the flow generated by a gravitational constraint operator. We conjecture that this flow agrees with the vacuum modular flow sufficiently well to conclude that the resulting algebra is type II_\infty, which projects to a type II_1 algebra after imposing a positive energy condition. The entropy of semiclassical states on this algebra can be computed and shown to agree with the generalized entropy by appealing to a first law of local subregions. The existence of a maximal entropy state for the type II_1 algebra is further shown to imply a version of Jacobson’s entanglement equilibrium hypothesis. We discuss other applications of this construction to quantum gravity and holography, including the quantum extremal surface prescription and the quantum focusing conjecture.

### External references

- 23070005
- 341d0ae1-eb93-4bc9-9356-b35141febd06
- 4e07ee48-7a12-46e0-912f-67f15501fd0e