In general relativity time requires an operational description, for example, associated with the reading of an idealised clock following some world line. I will show that in quantum physics idealised clocks can be modelled as composite quantum particles and discuss what foundational insights into the notion of time is enabled by this approach. Moreover, since quantum particles do do not follow...

The kappa-Minkowski noncommutative spacetime has been studied for a long time as an example of quantum spacetime with nontrivial commutation relations between spatial and temporal coordinates which, at first sight, seem to break Poincaré invariance. However kappa-Minkowski is invariant under a Hopf-algebra deformation of the Poincaré group, which involves some noncommutative structures that...

"Spatio-temporal relations are often taken to be more primitive than causal relations. Such a relationship is assumed whenever it is suggested that it is part of the definition of a causal relation that the cause must precede the effect in time. There are good reasons, however, to take causation to be the more primitive notion, with spatio-temporal relations merely describing aspects of...

"The process matrix framework was invented to capture a phenomenon known as indefinite or quantum causal structure. Due to the generality of that framework, however, for many process matrices there is no clear physical interpretation. A popular approach towards a quantum theory of gravity is the Page-Wootters formalism, which associates to time a Hilbert space structure similar to spatial...

In physics, a reference frame is an abstract coordinate system that specifies observations within that frame. While quantum states depend on the choice of reference frame, the form of physical laws is assumed to be covariant. Recently, it has been proposed to consider reference frames as physical systems and as such assume that they obey quantum mechanics. In my talk, I will present recent...

Time Reversal T is usually discussed in the traditional framework of quantum mechanics in which T is represented by an anti-unitary operator. But quantum gravity may well need generalization of standard quantum mechanics which may not preserve even its linear structure, let alone the unitarity of dynamics and anti-unitarity of T. Then the currently used arguments to conclude that T violation...

I will present a quantum gravity approach based on a Lorentzian path integral for quantum geometries. The properties of quantum space time can be measured using geometric operators. This allows also to discuss fluctuations of causal structure as well as violations of (micro-) causality. I will explain how the Lorentzian path integral comes with various options regarding which quantum space...

Time cannot be both absolute (as in quantum mechanics) and dynamical (as in general relativity). I present general arguments for the absence of time at the most fundamental level of quantum gravity. I discuss possible concepts that could replace it and present the recovery of standard time as an approximate concept. My discussion is restricted to quantum geometrodynamics, but I argue for the...

"We propose a realist completion of quantum mechanics, in the sense of a complete description of individual events. The proposed fundamental theory assumes that time, events, causal structure, momentum and energy are fundamental. But space and the wave function are emergent.

The beables of the theory are the views of the events, which are a subset of their causal pasts. Thus, this theory...

I will sketch how the perspective-neutral approach to (quantum) frame covariance brings together some recent developments on dynamical reference frames in quantum foundations, gauge theories and gravity. The survey will touch on spatial frames, quantum clocks and the problem of time, edge modes, and the relativity of subsystems.

"We propose a time-of-arrival operator in quantum mechanics by conditioning on a quantum clock. This allows us to bypass some of the problems of previous proposals, and to obtain a Hermitian time of arrival operator whose probability distribution arises from the Born rule and which has a clear physical interpretation. The same procedure can be employed to measure the ""time at which some event...

Transformations between reference frames play a crucial role in our understanding of physical processes. In practice, reference frames are realised by physical systems, which are standardly treated as classical. However, assuming that every physical system is ultimately quantum, it is interesting to ask how a theory of transformations wrt quantum reference frames would look like, and what...

Time is absolute in quantum mechanics, whereas it is dynamical in general relativity. This is considered as one of the main obstacles towards unifying quantum theory and gravity. Relational quantum dynamics offers a possible solution by treating clocks as internal quantum systems, which promotes time to a dynamical quantity. This talk begins with a quick overview of time in relational quantum...

A possible solution of the problem of time in quantum gravitational systems is presented based on a relational description between the parameterized Dirac observables of the system under consideration and the clocks. The use of physical clocks required by a quantum gravitational description of time is shown to induce a loss of unitarity. The evolution is described by a Lindblad-type master...

Information theory is an invaluable tool for studying questions around the foundations of physics. In thermodynamics, for example, it provides the key to resolving apparent contradictions, such as the famous Maxwell's demon paradox. Conversely, information theory lends itself to the conception of novel paradoxes, such as the black hole information paradox, which helps us sharpening our...

"It is widely believed that the homogeneity of time is the symmetry related by Noether's (first) theorem to the conservation of energy, and indeed that it explains energy conservation. Both claims are questionable, and in particular seemingly hard to reconcile with the modern version of Noether's first theorem due independently to Martínes Alonso (1979) and Olver (1986).

The talk is based...

I argue that modern physics gives us good reason to take seriously the possibility of laws which are non-local, global, or in some other way non-dynamical. I set out a general framework for lawhood which does not presuppose the standard kinematical/dynamical split, and I apply it to the problem of giving a generalized definition of determinism for the non-dynamical context. Finally I make some...

"Physics is formulated in terms of timeless axiomatic mathematics. However, time is essential in all our stories, in particular in physics. For example, to think of an event is to think of something in time. A formulation of physics based of intuitionism, a constructive form of mathematics built on time-evolving processes, would offer a perspective that is closer to our experience of physical...

Time plays a fundamental role in our ability to make sense of the physical laws in the world around us. The nature of time has puzzled people –- from the ancient Greeks to the present day -– resulting in a long running debate between philosophers and physicists alike to whether time needs change to exist (the so-called relatival theory), or whether time flows regardless of change (the...

The concrete perspective of using interference to measure Gravity Induced Entanglement in the lab is a very exciting development for quantum gravity. While the measurements considered so far only test the nonrelativistic regime, the same technique might allow access to genuine relativistic quantum effects. Among these, there might be the possibility of direct detection of time quantum discreteness.

"Candidate theories of quantum gravity must answer the questions: how can the dynamics of quantum states of matter and geometry be defined in a diffeomorphism-invariant way? How are the quantum states related to probabilities in the absence of a preferred time? To address these issues, we discuss the construction and interpretation of relational observables in quantum theories with worldline...

I discuss the new dimension that the relational approach to the problem of time takes in quantum gravity contexts in which spacetime and geometry are understood as emergent. I argue that, in this case, the relational strategy is best realized at an approximate and effective level, after suitable coarse graining and only in terms of special quantum states. I then show a concrete realization of...

Quantum cosmology faces the problem of time: the Universe has no background time, only interacting dynamical degrees of freedom within it. The relational view is to use one degree of freedom (which can be matter or geometry) as a clock for the others. In this talk we discuss a cosmological model of a flat FLRW universe filled with a massless scalar field and a perfect fluid. We study three...

"We revisit the arguments underlying two well-known arrival-time distributions in quantum mechanics, viz.,

the Aharonov-Bohm and Kijowski (ABK) distribution, applicable for freely moving particles, and the quantum

flux (QF) distribution. An inconsistency in the original axiomatic derivation of Kijowski’s result is pointed out,

along with an inescapable consequence of the “negative arrival...

"Even though path-integral formulations of quantum theory are thought to be equivalent to state-based approaches, path-integrals are rarely used to motivate answers to foundational questions. This talk will summarize a number of implications concerning time and time-symmetry which result from the path-integral viewpoint. Such a perspective sheds serious doubt on dynamical collapse theories,...

To this date no empirical evidence contradicts general relativity. In particular, there is no experimental proof a quantum theory of gravity is needed. Surprisingly, it appears likely that the first such evidence would come from experiments that involve non relativistic matter and extremely weak gravitational fields. The conceptual key for this is the Planck mass, a mesoscopic mass scale,...

What does it mean to say that a curve in state space describes change with respect to time, as opposed to space or any other parameter? What does it mean to say it's time is asymmetric? Inspired by the Wigner-Bargmann analysis of the Poincaré group, I discuss a general framework for understanding the meaning of time evolution and temporal symmetry in terms of the representation of a semigroup...

It has been previously discussed how events (interactions) in quantum mechanics are time-symmetric and an arrow of time is only due to the arrow of inference in the paper “Quantum information and the arrow of time”, arXiv:2010.05734 by Andrea Di Biagio, Pietro Dona, and Carlo Rovelli. In the relational interpretation of Quantum Mechanics, these interactions are relative facts. Stable facts...

"The Causaloid framework [1] is useful to study Theories with Indefinite Causality; since Quantum Gravity is expected to marry the radical aspects of General Relativity (dynamic causality) and Quantum Theory (probabilistic-ness). To operationally study physical theories one finds the minimum set of quantities required to perform any calculation through physical compression. In this framework,...

In classical mechanics, the representations of dynamical evolutions of a system and those of interactions the system can have with its environment are different vector fields on the space of states: evolutions and interactions are conceptually, physically and mathematically different in classical physics, and those differences arise from the generic structure of the very dynamics of classical...

"Quantum cosmology faces the problem of time: the Universe has no

background time, only interacting dynamical degrees of freedom within

it. The relational view is to use one degree of freedom (which can be

matter or geometry) as a clock for the others. In this talk we discuss a

cosmological model of a flat FLRW universe filled with a massless scalar

field and a perfect fluid. We study...