Puzzles in the Quantum Gravity Landscape: viewpoints from different approaches

America/Toronto
PI/1-100 - Theatre (Perimeter Institute for Theoretical Physics)

PI/1-100 - Theatre

Perimeter Institute for Theoretical Physics

190
Alessia Platania, Marc Schiffer
Description

Unraveling the quantum nature of gravity is one of the most pressing problems of theoretical physics. Several ideas have been put forward and resulted in a number of theories of quantum gravity. While these theories have explored different facets of the “quantum gravity landscape”, all viable approaches should ultimately make contact with observations, and answer exciting questions in cosmology and black-hole physics.

Sharing knowledge, exchanging ideas, and building a dictionary between different theories are crucial steps toward answering these questions, efficiently contrasting different theories, and ultimately reaching a deeper understanding of our Universe.

This conference will contribute to these goals by bringing together leading experts in different approaches to quantum gravity, gravitational effective field theory, black-hole physics, and cosmology. We will focus on specific puzzles in quantum gravity and their resolutions within different approaches. The conference will be highly interactive, with plenty of time to discuss common problems, understand the big picture, and develop novel connections between fields.


Registration: Registration is now open, and both in-person and virtual participation is welcome. Online participants will be able to interact on an equal footing in question sessions and discussions. In-person attendance is limited and will be approved on a first-come, first-served basis. Talks are by invitation only, but in-person participants are encouraged to apply to present a poster.

Spam warning: There is an increasing number of scam agencies reaching out to conference speakers and attendees. Perimeter Institute does not use third-party agencies. We advise speakers and attendees to ignore emails and not to provide any details to anyone who is not from Perimeter Institute.  

Confirmed Speakers and Panelists:

  • Abhay Ashtekar (Penn State University)
  • Robert Brandenberger (McGill University)
  • Luca Buoninfante (Nordita)
  • Xavier Calmet (University of Sussex)
  • Francesco di Filippo (Kyoto University)
  • Bianca Dittrich (Perimeter Institute)
  • John Donoghue (University of Massachusetts)
  • Astrid Eichhorn (CP3-origins)
  • Johanna Erdmenger (Würzburg University)
  • Ghazal Geshnizjani (Perimeter Institute)
  • Ruth Gregory (King's College)
  • Lavinia Heisenberg (Heidelberg University)
  • Bob Holdom (University of Toronto)
  • Benjamin Knorr (Nordita)
  • Renate Loll (Radboud University Nijmegen)
  • Miguel Montero (IFT Madrid)
  • Rob Myers (Perimeter Institute)
  • Sabrina Pasterski (Perimeter Institute)
  • Fernando Quevedo (Cambridge University)
  • Lisa Randall (Harvard University)
  • Kasia Rejzner (York University)
  • Mairi Sakellariadou (King's College)
  • Lee Smolin (Perimeter Institute)
  • Kellogg Stelle (Imperial College)
  • Sumati Surya (Raman Research Institute)
  • Andrew Tolley (Imperial College)
  • Neil Turok (University of Edinburgh)
  • Pedro Vieira (Perimeter Institute)
  • Yasaman Yazdi (Imperial College)

 

Territorial Land Acknowledgement

Perimeter Institute acknowledges that it is situated on the traditional territory of the Anishinaabe, Haudenosaunee, and Neutral peoples.

Perimeter Institute is located on the Haldimand Tract. After the American Revolution, the tract was granted by the British to the Six Nations of the Grand River and the Mississaugas of the Credit First Nation as compensation for their role in the war and for the loss of their traditional lands in upstate New York. Of the 950,000 acres granted to the Haudenosaunee, less than 5 percent remains Six Nations land. Only 6,100 acres remain Mississaugas of the Credit land. 

We thank the Anishinaabe, Haudenosaunee, and Neutral peoples for hosting us on their land.

Participants
  • A Morgan Sachs
  • Aadesh .
  • Aaghaz Mahajan
  • Aaron Held
  • Aayush Verma
  • Abdelghani Errehymy
  • Abha Mahato
  • Abhay Ashtekar
  • Abhay Katyal
  • Abhijith P S
  • Abhinav Yadav
  • Abinash Swain
  • Abolfazl Chaman Motlagh
  • Adam Bac
  • Adam RUTKOWSKI
  • Adele Naddeo
  • Ademola Adeifeoba
  • Adeyemi Fagbade
  • Ahmed Abdalkarim
  • Ahmed Adel Mahmoud
  • Ahmed Awan
  • Aiver Luke Suing
  • Akash Kumar Heera
  • Albert Farah
  • Alberto Grasso
  • Aldo Riello
  • Alejandro Vilar López
  • Alessandro Santoni
  • Alessandro Valenti
  • Alessia Platania
  • Alex Cassem
  • Alex Swash
  • Alexander Jercher
  • Alexander Vilenkin
  • Alexandra Chanson
  • Alexandre Torres
  • Alexannder Andrianov
  • Alexey Koshelev
  • Alfio Bonanno
  • Alfonso Bernal
  • Alfredo Urbano
  • Ali Eghrari
  • Ali Övgün
  • Aliasghar Parvizi
  • Alicia Castro
  • Alireza Pahlavan
  • Allan Rodolfo Hurtado Rodríguez
  • Alonso Perez-Lona
  • Alvaro Torres Caballeros
  • Aman Ganeju
  • AMAN YADAV
  • Amany Zuhd
  • Ambica Govind
  • Amit Pradhan
  • Amitkumar Pandey
  • Amogh Achari
  • amruta Desai
  • Ana Abreu
  • ANAND MALLIK
  • Anandh Krishna M
  • Anayeli Ramirez
  • Andrea Calcinari
  • Andrea Legramandi
  • Andrea Pizzamiglio
  • Andreas Pithis
  • Andrew Kovachik
  • Andrew Liddle
  • Andrew Tolley
  • Andrey Shkerin
  • ANDRIAMAHERITSILAVO Garoson Alain
  • André Gomes
  • Andrés Argandoña
  • ANEEK JANA
  • Anindita Maiti
  • Ankur Chhabra
  • Anna CHRYSOSTOMOU
  • Anna Tokareva
  • Annie Wei
  • Anthonny Canazas
  • Anton Suchaneck
  • Antonio Pereira
  • Antonios Kalogirou
  • Anubhab Sur
  • Anubhav Mahapatra
  • Apoorv Tripathi
  • Aqsa Sattar Abdul Sattar
  • Ariel Vyny EPOUYE
  • Aristodimos Striftaris Chalkiopoulos
  • Arman Al-Jaf
  • Armin van de Venn
  • Arsal Kamal
  • Arsh Khan
  • Arthur Vereijken
  • Arthur Vieira
  • Aryabrat Mahapatra
  • Asad Mahdi
  • Ashish Pandita
  • Ashok Kumar Aryal
  • ASHRAY MODI
  • Ashwani shankar Saraswat
  • Ashwin Meshram
  • Asif Ayub
  • Asma Nejati
  • ASTHA KAKKAR
  • Astrid Eichhorn
  • Aurora Ireland
  • Avijit Das
  • AVIRAL AGGARWAL
  • Aydin Deger
  • Ayush Hazarika
  • Bahram Shakerin
  • Balbeer Singh
  • Balázs Cirok
  • Barbara Soda
  • Bardh Quni
  • Bardia H.Fahim
  • Bekir Baytas
  • Benjamin Knorr
  • Benjamin Muntz
  • Beyhan Pulice
  • Bhanu Pranav Challa
  • Bhavay Luthra
  • Bhuvnesh Kumar
  • Bianca Buturca
  • Bianca Dittrich
  • BILGUUN Bayarsaikhan
  • Bishal Das
  • Bishnu Gupta Teli
  • Biswajit Bhowmick
  • Biswanath Das
  • bo xiong
  • Bob Holdom
  • Bogar Díaz Jiménez
  • Bruno Torres
  • Burak Oğuz
  • Caner Unal
  • Carl Rosenzweig
  • Carlo Branchina
  • Carlo Rovelli
  • Carlos Alberto Almeida
  • Carlos Beltrán
  • Carlos Ramirez
  • CARMINE MONTELLA
  • Caroline Jonas
  • Carsten Dierks
  • Cecilia Jarlskog
  • Chaimaa Karam
  • Chao Chen
  • Che-Yu Chen
  • Chen Zhang
  • Chen-Te Ma
  • Cheng Cheng
  • Chengcheng Liu
  • Chengyi Li
  • Chi-Ho Cheng
  • Chiedozie Friday
  • Chih-Hung Wu
  • Chinthamani Hari Krishna
  • Chris Akers
  • Chris Blackwood
  • Chris Smeenk
  • Christian Corda
  • Christian Pfeifer
  • Christopher Pollack
  • Christos Kokorelis
  • Chuanxin Cui
  • Chunling Yan
  • Cianan Conefrey-Shinozaki
  • Claudio Emmrich
  • Claudio Paganini
  • Cobus Labuschagne
  • Conner Dailey
  • Cristian Stelea
  • Cédrick Perron
  • Céline Zwikel
  • Dalila Pirvu
  • Damodar Rajbhandari
  • Daniel Gálvez
  • Daniel Paraizo
  • Daniel Siretanu
  • Daniele Rizzo
  • Dario Lorenzoni
  • David Jackson
  • David Kubiznak
  • David Martel
  • Davide Fontana
  • Deden Midzanul Akbar
  • Deep Sagar
  • Deepak Panwar
  • Deepak Vaid
  • Deepan Betal
  • Deeshani Mitra
  • Deeshani Mitra
  • Dejan Stojkovic
  • Demian Cho
  • DEV DUTT
  • Devang Krishnan
  • Dhruv Pathak
  • Diego Buccio
  • Dimitra Chatzopoulou
  • Divyesh Solanki
  • Djamel Dou
  • Djordje Minic
  • Dmitry Levkov
  • Domenica Garzon
  • Domenico Frattulillo
  • Donald Salisbury
  • Dongxue Qu
  • Doyeon Kim
  • Dražen Glavan
  • Edison Montoya
  • Edoardo D'Angelo
  • Eirini Telali
  • Eissa Alnasrallah
  • Eivind Joerstad
  • Eline Prytz Andersen
  • Emanuel-Cristian Boghiu
  • Emanuele Panella
  • Emil Mottola
  • Emir Baysazan
  • emma albertini
  • Enrico Olivucci
  • Eren Erberk Erkul
  • Eric Sharpe
  • Erick Ivan Duque Gonzalez
  • Erik Curiel
  • Erik Schnetter
  • Esraa Talal
  • Etera LIVINE
  • Ethan Méndez
  • Eugene Adjei
  • Evita Gamber
  • Fabian Wagner
  • Fabio Maria Mele
  • FAICAL BARZI
  • Farshid Soltani
  • Farzan Ghazimoradi
  • Farzan Ghazimoradi
  • Fatemeh Pouryahya
  • Federica Fragomeno
  • Felipe Faria
  • Fernando Méndez
  • Fernando Quevedo
  • Fernando Temoche
  • Filip Rescic
  • Filippus Roux
  • Finnian Gray
  • Florian Nortier
  • Folkert Kuipers
  • Fotios Anagnostopoulos
  • Francesca Vidotto
  • Francesco di Filippo
  • Francesco Fazzini
  • Francisco Diego Mazzitelli
  • Francisco Jara-Lobo
  • Francisco Lustosa
  • Francisco Pipa
  • Franco Pezzella
  • Freeman Wong
  • Fuminori Okabayashi
  • Gabriel Assant
  • Gaetano Lambiase
  • Garreth Kemp
  • Gary Horowitz
  • Gaurav Narain
  • Georges Obied
  • Georgios Fanaras
  • Gerardo Suarez
  • Ghazal Geshnizjani
  • Gianfranco De Simone
  • Giovanni Amelino-Camelia
  • Giovanni Venturi
  • Giulia Gubitosi
  • Giulia Maniccia
  • Giulia Mazzola
  • Giulio Neri
  • Giuseppe Fabiano
  • Giuseppe Meluccio
  • Gonzalo Naranjo
  • Graham Van Goffrier
  • Gregory Kaplanek
  • Grzegorz Czelusta
  • Guilherme Franzmann
  • Guillem Domenech
  • Guri Buza
  • Gurpahul Singh
  • Gustavo de Brito
  • Hafez Ahammad Bhuiyan
  • Hamish Forbes
  • Haneen Sakaji
  • Hank Chen
  • Hannah Harris
  • Hans Mühlen
  • Haoyu Sun
  • Haridev S R
  • Harikumar E
  • Haris Tzerefos
  • Harkirat Singh Sahota
  • Harold Erbin
  • HARPREET SINGH
  • Hassan Manshouri
  • Hassan Mehmood
  • Hieu Pham
  • Hieu Tran
  • Hugh Osborn
  • Hugo A Morales-Técotl
  • Hyo Jung Park
  • Hytham Abdel Wahab Ahmad Alwrekat
  • Héloïse Delaporte
  • Ian George
  • Iarley Lobo
  • Ibai Asensio
  • Ibere Kuntz
  • Ifigeneia Giannakoudi
  • Igor Mol
  • Imrankhan Mulani
  • IOANNIS MATTHAIAKAKIS
  • Ioannis Sklavounos
  • Irfan Javed
  • Ismail Khan
  • Iustin Surubaru
  • Ivan Avramidi
  • Ivano Basile
  • İzzet Sakallı
  • Jack Hill
  • Jacopo Mazza
  • Jacopo Uggeri
  • Jacqueline Caminiti
  • Jad Halimeh
  • Jafar Khodagholizadeh
  • Jahir Basha Farook
  • Jaime Besprosvany
  • Jan Tränkle
  • Janek Kozicki
  • Jash Pandya
  • javiera cerda
  • Jaya Sharma
  • Jayishnu Kumar
  • Jean Michel MAILLET
  • Jean Wang
  • Jean-Christophe Wallet
  • Jeferson Dias Gonçalves
  • Jeff Williams
  • Jens Boos
  • JERIN MOHAN N D
  • Jerome Quintin
  • Jerzy Kowalski-Glikman
  • Jerzy Lewandowski
  • Jesse Woods
  • Jia Wang
  • JIAN HOU LAI
  • Jiatong Yan
  • Jiayue Yang
  • Jie Zhu
  • Jinzhao Wang
  • Joan Quirant
  • Joanna Peszka
  • Joel Brownstein
  • Johanna Borissova
  • Johanna Erdmenger
  • Johannes Lahnsteiner
  • Johannes Thürigen
  • John Amedzo
  • John Carter
  • John Donoghue
  • John Hiller
  • John Moffat
  • John Schiller
  • Jonas Mureika
  • Jonas Neuser
  • Jonathan Karl
  • Jonathan Oppenheim
  • Jonathan Riess
  • Jonathan Sharp
  • Jordan Krywonos
  • Joren Brunekreef
  • Jorge Eduardo Nava Sejas
  • Jorge Hernandez-Aguilar
  • Jorge Luis Haro Santiago
  • Jose Cortes
  • Jose Edelstein
  • Jose Luis Carrasco Huillca
  • Jose Manuel Carmona
  • Jose Padua-Argüelles
  • Jose Pinedo Soto
  • Josh Kirklin
  • Joshua Davy
  • Joshua Erlich
  • José Polo-Gómez
  • João Victor Caires Santos
  • Juan Abranches
  • Juan Augusto Cabrera Padilla
  • Juan Carlos Dominguez solis
  • Juan Felipe Bravo
  • Judy Mark Beatingo
  • Julio Arrechea
  • Julio Arrechea
  • Junaid Mohi-Ud-Din
  • Juri Agresti
  • Jury Radkovski
  • Jônathas Samuel Tavares de Souza
  • K. SRAVAN KUMAR
  • Kajol Paithankar
  • Kanan Virkar
  • Kangqi Fu
  • Karen Villa
  • Karen Yeats
  • Karl-Henning Rehren
  • Kartik Kakade
  • Kasia Rejzner
  • Kaushal Pillay
  • Kaustubh Roy
  • Kawther HADEF
  • Kazi Abdullah
  • Kei-Ichi Kondo
  • Keke Zhang
  • Kelly Stelle
  • Kelly Wurtz
  • Kepa Sousa
  • Kevin Falls
  • Kevin Loo
  • Kevin Rudolf Siebert
  • Khalid Gabriel
  • Khanh Pham
  • Kimia Ghanaatpisheh
  • Kirill Zatrimaylov
  • Klaus Liegener
  • Konstantinos Dialektopoulos
  • Kotaro Saito
  • Kristin Schleich
  • Kritartha Dey
  • Kumail Radhi
  • Kuntal Dhara
  • KUNTAL PAL
  • Kurt Koltko
  • Kwing Lam Leung
  • kyrillos ElAbd
  • Källan Berglund
  • Lartey Collins
  • Laura Burri
  • Laurent sacco
  • Lavinia Heisenberg
  • Lavoisier Junior WAH KENOUNOUH
  • Leandro de Paula
  • Leandro Fontes
  • Lee Smolin
  • Leila Graef
  • Leo Schoots
  • Lex Bernard Parico
  • Lijing Shao
  • Lin-Qing Chen
  • Linda van Manen
  • Lisa Mickel
  • Lisa Randall
  • Lovneesh Garg
  • Luca Bombelli
  • Luca Buoninfante
  • Luca Ciambelli
  • Luca Marchetti
  • Luca Smaldone
  • Luca Visinelli
  • Lucas Vicente García-Consuegra
  • Lucien Hardy
  • Lucio Vacchiano
  • Lucrezia Ravera
  • Lucy Low
  • Luis Borck
  • Luiz Filipe Guimarães
  • Luke Mrini
  • Luna Zagorc
  • Lázaro Raúl Díaz Lievano
  • Madhan A
  • Mahesh Kumar
  • Mairi Sakellariadou
  • Makoto Narita
  • Malina Rosca
  • Manduva Nihanth
  • Mani Shankar Ailiga
  • Manthos Karydas
  • Manuel Da costa
  • Manuel Reichert
  • Manus Visser
  • Marc Andrei Tabadero
  • Marc Schiffer
  • Marc Soto
  • Marcin Markiewicz
  • Marco de Cesare
  • Marco Maceda
  • Marco Sebastianutti
  • Marek Liška
  • Marek Rogatko
  • Maria Polackova
  • Maria-Myrto Pegioudi
  • Mariam Bouhmadi-López
  • Mariano Dominguez
  • Mariaveronica De Angelis
  • Marika Taylor
  • Marina Cortes
  • Mark Roberts
  • Martin Plávala
  • Martine Irog
  • Martín Bravo
  • Maryam Ahsan
  • María Rosa Preciado Rivas
  • Massimiliano Rinaldi
  • Masuma Ahmed
  • Mateo Pascual
  • Matheus Yudi Maruyama
  • Matilda Delgado
  • Matthew Hogan
  • Matthias Blau
  • Mauricio Gamonal
  • Maxence Larose
  • Maxime Gadioux
  • Maïté Dupuis
  • Md Raghib
  • Md. Mubtasim Fuad
  • Mehdi Assanioussi
  • Mehregan Doroudiani
  • Melissa Rodriguez Zarate
  • Michael Florian Wondrak
  • Michael Imseis
  • Michael Sannestedt
  • Michał Horodecki
  • Michele Lenzi
  • Michele Nardelli
  • Miguel Montero
  • Mike Schneider
  • Ming Zhang
  • Mingxi Chen
  • Moaathe Belhaj Ahmed
  • Moayad Al Khaled
  • Moeez Hassan
  • Mohamed Fawzy Abbas Aly
  • Mohammad Ansari
  • Mojtaba Shahbazi
  • Moletlanyi Tshipa
  • Mopholosi Raymond Monnaatsheko
  • Moustafa Ismail
  • Muhammad Awais Sadiq
  • Muhammad Husnain Shahid
  • Muhammad Shuraim
  • Muhammad Talal
  • Muhammad Talal
  • Muhammad Waqar Amin
  • Muneeb Mushtaq
  • Muneeb Zahoor Basu
  • Munkhjargal Lkhagvadorj
  • Nabeel Rasheed
  • NADİR YAVUZKAN
  • Nageswaran Rajendran
  • Nail Khusnutdinov
  • Namrata Joshi
  • Naouel Boulkaboul
  • Nasser Mfouapon Youssouf
  • Natali Pineda
  • Natali Pineda
  • Nathaniel Sherrill
  • Navjot Singh
  • Nazir Da Costa Gomez
  • Neeraj Kumar
  • Neil Turok
  • Nguyen Hoang Vu
  • Nia Robles
  • Niayesh Afshordi
  • Nico Dichter
  • Nicola Cinardi
  • Nicolò Burzillà
  • Nicolò Risso
  • Niels Saavedra
  • Nikiforos Georgiadis
  • Nikolaos Kalogeropoulos
  • Nikolaos Mitrakos
  • Nilesh Pandey
  • Nils Nilsson
  • Nina Mazurewicz
  • Nisa Kalkan
  • Nitesh Kumar Dubey
  • Nithyasree P G
  • Nitica Sakharwade
  • Nomaan X
  • Núria Navarro
  • Oleg Boulanov
  • Oleg Melichev
  • Oleksandra Hrytseniak
  • Olga Papadoulaki
  • Olga Sazhina
  • Omar Gallegos
  • Omprakash Karwa
  • Osmin Lacombe
  • Othusitse Elias Modise
  • Owais Farooq
  • Owais Farooq
  • Pablo Leon
  • Pallab Roygupta
  • Panagiotis Dorlis
  • Pankaj Chavan
  • Pankaj Pawar
  • Pantelis Manousselis
  • Paolo Bertozzini
  • Parthasarathi Nag
  • Pawan Kumar Gupta
  • PAYEL DOLAI
  • Pedro de Dios Cruz
  • Pedro Henrique Morais
  • Pedro Viera
  • Peter Woit
  • Petr Lebedev
  • Philip Mannheim
  • Pietro Conzinu
  • Pietro Zito
  • Pinaki Banerjee
  • Pingyuan Gu
  • Pola Jakubowicz
  • Poonam Chandra
  • Prasad Dhali
  • Prasoon Chakraborty
  • Prateek Gupta
  • Prayas Satkar
  • Premeshwari Naorem
  • Prince Asare
  • Prince Kumar
  • Prince Osei
  • PRIYANSHU BANSAL
  • Puttarak Jai-akson
  • Qiaoyin Pan
  • Quang Loc Tran
  • RAGHOTHAM A KULKARNI
  • RAGHVENDRA SINGH
  • Rahimeh Foroughi
  • Rahul Rahul
  • Rahul Rahul
  • Rajat Sharma
  • Rajeev Singh
  • Raquel Izquierdo García
  • Rathindra Nath Das
  • Ravisankar Varma Kodungallur
  • Rawand Abdullah
  • Reaz Shafqat
  • Remo Garattini
  • Renata Ferrero
  • Renate Loll
  • Renato Vicente
  • Ribhu Paul
  • Richard Avalos Arteaga
  • Rihab Nawaz
  • Rizwanul Alam
  • Rob Leigh
  • Robert Brandenberger
  • Robert Mann
  • Robert Myers
  • Roberto Menjivar
  • Roberto Percacci
  • Robin Oberfrank
  • Rodrigo Saliba
  • roger luther
  • Rohit Bhattarai
  • Rohit Raj
  • Rohith Babu
  • Ronnie Rodgers
  • Roumani Alabd
  • Rubab Manzoor
  • Rugaya Ali
  • Rui Xian Siew
  • Ruolin Liu
  • Ruth Gregory
  • S. Vultaggio
  • Saakshi Rai
  • Saba Rahimy
  • Sabah Ud Din Ahmad
  • Sabrina Pasterski
  • SACHIKANTA NANDA
  • Sadegh Moslehi
  • Saeed Rastgoo
  • Sagar Kumar Maity
  • Sagnik Sinha Choudhuri
  • Sahaana V
  • Sahil Yadav
  • SAIKAT SAHA
  • Salma Ali
  • Salma Wateed
  • Samanta Saha
  • samantha Hergott
  • Samarth Jain
  • Samarth Khandelwal
  • samreen zaman
  • Samuel Gunatilleke
  • Samuel Laliberte
  • Sana Elgamal
  • sana saleem
  • Sanskar Benjwal
  • Santosh Sapkota
  • Saptashaw Das
  • Sara Fernandez Uria
  • Sara Motalebi
  • Sara Rufrano Aliberti
  • Sarayu Narayan
  • Sarmad Jamali
  • Sarthak Duary
  • Sarthak Talukdar
  • SAUL PANIBRA
  • Saurabh Natu
  • Sauvik Sen
  • Savas Dimopoulos
  • Sayantika Bose
  • Sebastian Franchino-Viñas
  • Sebastian Steinhaus
  • Sebastiano Segreto
  • Sejal Lotliker
  • Selim Hotinli
  • Sercan Hüsnügil
  • Serena Giardino
  • Sergey Bondarenko
  • Sergey Sibiryakov
  • Sergio Ernesto Aguilar Gutierrez
  • Sergio Patiño
  • Seth Asante
  • Seth Major
  • Seyed Meraj Rasouli
  • Shad Azmi
  • Shadi Ali Ahmad
  • Shafaq Elahi
  • Shafeeq Rahman Thottoli
  • Shahana Aziz
  • Shamayela Fayaz
  • Shihabul Haque
  • Shiksha Pandey
  • Shohreh Abdolrahimi
  • Shoy Ouseph
  • Shreedip Kaini
  • Shubham choudhary
  • Shubhashis Mallik
  • Siddhartha Bhattacharjee
  • Silvia De Bianchi
  • Simone Cepollaro
  • Sithi V Muniandy
  • Sjors Heefer
  • Snehil Pandey
  • Sohei Tsukahara
  • Sotirios Mygdalas
  • Souma Mazumdar
  • Sounak Pal
  • Stana Willmann
  • Stefan Kurlyand
  • Stefano Liberati
  • Steffen Gielen
  • stephen hsu
  • Steve Giddings
  • Steve Takouan Tchounga
  • Steven Weilong Hsia
  • Stuart Marongwe
  • Subhroneel Chakrabarti
  • Suchanan Wangsatang
  • Sudipta Roy
  • Sugath K S
  • Suman Kumar Panja
  • Sumati Surya
  • Sundara Paripooranan Chellappa
  • Suppawit Polkong
  • Susanne Schander
  • Suvadeep Roy
  • Swaroop Pradhan
  • Sydney Roberts
  • Syed Abbas Ahmad
  • Syed mustafa Athar
  • Taiga Miyachi
  • Taisanul Haque
  • Takanao Tsuyuki
  • Takato Mori
  • Takayuki Hirayama
  • Talal Chowdhury
  • Tamal Mukhopadhyay
  • Tania Framst
  • Tanmoy Bhowmik
  • Tariq Allaithy
  • Tasha Richardson
  • Tatsuyuki Sugawa
  • Ted Jacobson
  • Teruhiko Kawano
  • Thejas A NAIR
  • Theodoros Papanikolaou
  • Thomas Moreau
  • Tianyi Xie
  • Tim Hoffmann
  • Tim Jones
  • Timothy Green
  • Tina Harriott
  • TITUS K MATHEW
  • Tom Eynard-Machet
  • Tomnie Thobo
  • Tsunehide Kuroki
  • Ulrich Chiapi Ngamako
  • Ulrich Chiapi Ngamako
  • Ung Nguyen
  • UTSAV ATTA
  • Vaibhav Burman
  • Vaibhav Kalvakota
  • Valerie Tynianski
  • Valle Varo
  • Vasco Fortes
  • Vasudevan Sundararaman
  • Vatsalya Vaibhav
  • Vedant Bhutra
  • VH Satheeshkumar
  • Via Nielson
  • Vicente Baca
  • Victor Berezin
  • Vikramaditya Mondal
  • Viqar Husain
  • Vishal Chaudhary
  • Vladimir Belokurov
  • Vladimir Dobrev
  • Waddia Summan
  • Wan Mohamad Husni Wan Mokhtar
  • Wei-Hsiang Shao
  • weifeng zhou
  • William Jin
  • William Ramirez
  • Writipriya Paul
  • Włodzimierz Piechocki
  • Xavier Calmet
  • Xerxes Arsiwalla
  • Xiaoyue Sun
  • Xitai Yin
  • Yamna Shaikh
  • Yanjun Zhou
  • Yannic Kruse
  • Yannick Kluth
  • Yasaman Yazdi
  • Yash Raj Sood
  • Yi-Nan Wang
  • Yichen Luo
  • Yiting Wang
  • Yu-Ting Zhou
  • Yugo Abe
  • Yuki Yamashita
  • Zampeli Adamantia
  • Zhencheng Wang
  • Zhengrong Qian
  • Zijing Li
  • Zoya Hassan
  • Şafak Turhan
Sarah Gardiner
    • 1
      Opening Remarks PI/1-100 - Theatre

      PI/1-100 - Theatre

      Perimeter Institute for Theoretical Physics

      190
    • 2
      Lessons of the Effective Field Theory Treatment of General Relativity PI/1-100 - Theatre

      PI/1-100 - Theatre

      Perimeter Institute for Theoretical Physics

      190

      I will briefly review the key concepts underlying the Effective Field Theory of General Relativity, and give a couple of examples of how it works. Then I will describe seven lessons which can be extracted from the theory. Finally I discuss some of the limitations of the EFT framework.

      Speaker: John Donoghue
    • 3
      Positivity Bounds and Effective Fields Theories (A Review) PI/1-100 - Theatre

      PI/1-100 - Theatre

      Perimeter Institute for Theoretical Physics

      190

      I will briefly review recent progress on how causality/analyticity and unitarity can put powerful constraints on both gravitational and non-gravitational EFTs that admit consistent UV completions.

      Speaker: Andrew Tolley
    • 4
      Holography and its implications for quantum gravity - VIRTUAL PI/1-100 - Theatre

      PI/1-100 - Theatre

      Perimeter Institute for Theoretical Physics

      190

      I will review implications of the AdS/CFT correspondence for quantum gravity, paying particular attention to holographic RG flows and the processing of information. Deformed hyperbolic geometries correspond to boundary field theory RG flows. Conversely, as I will exemplify using the recent approach of discrete holography, boundary RG flows may be used to reconstruct the bulk spacetime, for instance via tensor networks. I will discuss recent approaches towards including gravity dynamics into this reconstruction process.

      The presenter will be joining via Zoom for this talk.

      Speaker: Johanna Erdmenger
    • 11:00 a.m.
      Coffee Break PI/1-124 - Lower Bistro

      PI/1-124 - Lower Bistro

      Perimeter Institute for Theoretical Physics

      120
    • 5
      A hike through the Swamp PI/1-100 - Theatre

      PI/1-100 - Theatre

      Perimeter Institute for Theoretical Physics

      190

      At first sight, it seems that almost any QFT, seen as a low-energy effective field theory (EFT), can be coupled to gravity -- simply add an Einstein-Hilbert term, change all derivatives by covariant ones, and you're done. However, a growing body of evidence coming from String Theory compactifications, general properties of black hole evaporation, and rigorous results in holography, suggests that the opposite is true. We can work out the hidden constraints that quantum gravity consistency imposes in the matter sector systematically, an approach that receives the colourful name of "The Swampland Program". I will briefly review the program, its motivation, current results, and long-term goals.

      Speaker: Miguel Montero
    • 6
      Piecing Together a Flat Hologram PI/1-100 - Theatre

      PI/1-100 - Theatre

      Perimeter Institute for Theoretical Physics

      190

      The Celestial Holography program encompasses recent efforts to understand the flat space hologram in terms of a CFT living on the celestial sphere. A key development instigating these efforts came from understanding how soft limits of scattering encode infinite dimensional symmetry enhancements corresponding to the asymptotic symmetry group of the bulk spacetime. Historically, the construction of the bulk-boundary dual pair has followed bottom up approach matching symmetries on both sides. Recently, however, there has been exciting progress in formulating top down descriptions using insights from twisted holography. We review salient aspects of the celestial construction, the status of the dictionary, and active research directions.

      Speaker: Sabrina Pasterski
    • 12:45 p.m.
      Lunch PI/2-251 - Upper Bistro

      PI/2-251 - Upper Bistro

      Perimeter Institute for Theoretical Physics

      60
    • 7
      Open Discussion with today's speakers (Donoghue, Erdmenger, Montero, Pasterski, Tolley) PI/1-100 - Theatre

      PI/1-100 - Theatre

      Perimeter Institute for Theoretical Physics

      190
      Speakers: John Donoghue, Johanna Erdmenger, Miguel Montero, Sabrina Pasterski, Andrew Tolley
    • 3:15 p.m.
      Coffee Break PI/1-124 - Lower Bistro

      PI/1-124 - Lower Bistro

      Perimeter Institute for Theoretical Physics

      120
    • 8
      Panel Discussion - Strengths and limitations of EFT (Donoghue, Knorr, Montero, Quevedo, Tolley) PI/1-100 - Theatre

      PI/1-100 - Theatre

      Perimeter Institute for Theoretical Physics

      190
      Speakers: John Donoghue, Miguel Montero, Fernando Quevedo, Carlo Rovelli, Andrew Tolley
    • 5:15 p.m.
      Poster Session and Welcome Reception
    • 9
      Status, perspective and three challenges in the asymptotic-safety paradigm for quantum gravity - VIRTUAL PI/1-100 - Theatre

      PI/1-100 - Theatre

      Perimeter Institute for Theoretical Physics

      190

      In my talk, I'll review the key idea underlying asymptotically safe quantum gravity, before giving an overview of the current status and open questions. I'll then spotlight three challenges. The first challenge is how to test quantum gravity and I'll advocate that by linking quantum gravity to particle physics and cosmology, we can probe quantum gravity at all scales. The second challenge is how to connect to other ideas about quantum spacetime and I'll discuss effective asymptotic safety as a way to link to, e.g., string theory. The third challenge is the status of global symmetries and I'll discuss what we know about the preservation of global symmetries in asymptotic safety and what this implies for a broader perspective on the question.

      The presenter will be joining via Zoom for this talk.

      Speaker: Astrid Eichhorn
    • 10
      CDT as computational gateway to nonperturbative quantum gravity PI/1-100 - Theatre

      PI/1-100 - Theatre

      Perimeter Institute for Theoretical Physics

      190

      Based on quantitative results on quantum observables in a Planckian regime, I will argue that using dynamical lattices `a la CDT to construct and explore the nonperturbative path integral over Lorentzian geometries is a bona-fide quantum field-theoretic "method" rather than an "approach" to quantum gravity. Its most important features are universality, unitarity and the presence of powerful numerical tools to directly simulate and measure a chunk of quantum spacetime of about 20 Planck lengths across. This small observational window is a preferred place to look for clues to what quantum gravity is all about. Despite the diffeomorphism-invariant and nonlocal character of the observables, qualitatively new and surprising UV properties have already been discovered, and compatibility checks with semiclassical expectations for several cosmological observables ("classical limit") have been performed successfully. The underlying new mathematics is that of random geometry and beyond-Riemannian geometry.

      Speaker: Renate Loll
    • 11
      UV complete 4-derivative scalar field theory PI/1-100 - Theatre

      PI/1-100 - Theatre

      Perimeter Institute for Theoretical Physics

      190

      A scalar field theory with 4-derivative kinetic terms and 4-derivative cubic and quartic couplings is presented as a proxy for quadratic gravity. Unitarity and positivity appear as the key issues in the scalar field theory, just as they do in quadratic gravity. We have extended some calculations to show how these issues are resolved in the high energy limit of the theory. The results also show how it is that differential cross sections can have good high energy behaviour.

      Speaker: Bob Holdom
    • 10:45 a.m.
      Coffee Break PI/1-124 - Lower Bistro

      PI/1-124 - Lower Bistro

      Perimeter Institute for Theoretical Physics

      120
    • 12
      The Case for Renormalizable Quantum Gravity: from local to nonlocal approaches (and back!) PI/1-100 - Theatre

      PI/1-100 - Theatre

      Perimeter Institute for Theoretical Physics

      190

      In the context of perturbative quantum field theory (QFT), the addition of quadratic-curvature invariants to the Einstein-Hilbert action makes it possible to achieve strict renormalizability in four dimensions. This theory exhibits unusual features due to an additional massive spin-2 ghost which, in general, may cause instabilities. In the first part of this talk, we focus on the possibility of giving up locality as a way to avoid ghost-like degrees of freedom and provide a critical assessment on open questions in nonlocal theories of gravity, such as the uniqueness problem. In the second part of the talk, we take a step back and argue that, despite the presence of the ghost and actually thanks to it, Quadratic Gravity can still provide a consistent local perturbative QFT description of the gravitational interaction and explain new physics beyond Einstein's general relativity, e.g., it offers a natural explanation for the inflationary phase. Finally, we argue that a type of nonlocality in gravity can still occur non-perturbatively and show that a new lower bound on scattering amplitudes indicates that the gravitational interaction is intrinsically nonlocal if black holes form.

      Speaker: Luca Buoninfante
    • 13
      Form Factors - a unifying language for Quantum Gravity PI/1-100 - Theatre

      PI/1-100 - Theatre

      Perimeter Institute for Theoretical Physics

      190

      QFT's remarkable success lies in its ability to yield precise predictions through e.g. scattering amplitudes, capturing the essence of running couplings in a gauge-invariant manner. However, the introduction of gravity disrupts this straightforward notion of momentum dependence, posing a significant challenge to our theoretical framework.
      Enter form factors—an ingenious concept that extends the idea of momentum dependence to the curved spacetime of quantum gravity. They form the central ingredient when discussing quantum gravity in a QFT language. Furthermore, within an effective action, form factors offer a unifying language, allowing us to compare and contrast different quantum gravity approaches apples-to-apples.
      I will give an overview of the ideas underlying form factors, their application to scattering problems, and their potential to put different approaches on the same footing.

      Speaker: Benjamin Knorr
    • 12:30 p.m.
      Lunch PI/2-251 - Upper Bistro

      PI/2-251 - Upper Bistro

      Perimeter Institute for Theoretical Physics

      60
    • 14
      Open Discussion with today's speakers (Buoninfante, Eichhorn, Holdom, Knorr, Loll) PI/1-100 - Theatre

      PI/1-100 - Theatre

      Perimeter Institute for Theoretical Physics

      190
      Speakers: Luca Buoninfante, Astrid Eichhorn, Bob Holdom, Benjamin Knorr, Renate Loll
    • 3:15 p.m.
      Coffee Break PI/1-124 - Lower Bistro

      PI/1-124 - Lower Bistro

      Perimeter Institute for Theoretical Physics

      120
    • 15
      Panel Discussion - QFT vs beyond-QFT approaches (Buoninfante, Rejzner, Smolin, Vieira) PI/1-100 - Theatre

      PI/1-100 - Theatre

      Perimeter Institute for Theoretical Physics

      190
      Speakers: Luca Buoninfante, Benjamin Knorr, Kasia Rejzner, Lee Smolin, Pedro Vieira
    • 5:15 p.m.
      Poster Session
    • 6:30 p.m.
      Pizza & Career: Panel for young researchers (Francesco di Filippo, Yasaman Yazdi, Miguel Montero, Kasia Rejzner) PI/2-251 - Upper Bistro

      PI/2-251 - Upper Bistro

      Perimeter Institute for Theoretical Physics

      60
    • 16
      Glimpses into Loop Quantum Gravity PI/1-100 - Theatre

      PI/1-100 - Theatre

      Perimeter Institute for Theoretical Physics

      190

      The organizers requested an overview of Loop Quantum Gravity (LQG). However, this is an impossible task, especially for a 30 minute talk, given that the subject is over three decades old with tens of thousands of papers. Instead, I will outline some of the key distinguishing features of LQG and discuss an illustrative application. Hopefully these topics will complement those that will be covered by Bianca Dittrich and Lee Smolin, without too much of an overlap.

      Speaker: Abhay Ashtekar
    • 17
      Puzzles, Resolutions and Open Questions in Causal Set Theory - VIRTUAL PI/1-100 - Theatre

      PI/1-100 - Theatre

      Perimeter Institute for Theoretical Physics

      190

      I will begin with a broad overview of the main ingredients of causal set theory, and then discuss the partial resolution of a long-standing "puzzle" in the causal set path sum. I will then discuss other causal set curiousities, ending with a brief overview of the challenges in constructing a realistic fully non-perturbative quantum dynamics.

      The presenter will be joining via Zoom for this talk.

      Speaker: Sumati Surya
    • 18
      Where is String Theory PI/1-100 - Theatre

      PI/1-100 - Theatre

      Perimeter Institute for Theoretical Physics

      190
      Speaker: Pedro Vieira
    • 10:45 a.m.
      Coffee Break PI/1-124 - Lower Bistro

      PI/1-124 - Lower Bistro

      Perimeter Institute for Theoretical Physics

      120
    • 19
      Panel Discussion - Cosmological Puzzles (Ashtekar, Brandenberger, Geshnizjani, Sakellariadou, Yazdi) PI/1-100 - Theatre

      PI/1-100 - Theatre

      Perimeter Institute for Theoretical Physics

      190
      Speakers: Abhay Ashtekar, Robert Brandenberger, Ghazal Geshnizjani, Mairi Sakellariadou, Yasaman Yazdi
    • 12:45 p.m.
      Lunch PI/2-251 - Upper Bistro

      PI/2-251 - Upper Bistro

      Perimeter Institute for Theoretical Physics

      60
    • 20
      Open Discussion with today's speakers (Ashtekar, Surya, Vieira) PI/1-100 - Theatre

      PI/1-100 - Theatre

      Perimeter Institute for Theoretical Physics

      190
      Speakers: Abhay Ashtekar, Sumati Surya, Pedro Vieira
    • 2:30 p.m.
      Group Photo - meet in the Atrium PI/1-119 - Atrium

      PI/1-119 - Atrium

      Perimeter Institute for Theoretical Physics

    • 2:35 p.m.
      Coffee Break PI/1-124 - Lower Bistro

      PI/1-124 - Lower Bistro

      Perimeter Institute for Theoretical Physics

      120
    • 7:00 p.m.
      Livestream: Secrets of the Universe – Hiding in Plain Sight? Neil Turok Public Lecture PI/1-119 - Atrium

      PI/1-119 - Atrium

      Perimeter Institute for Theoretical Physics

      205

      PI is pleased to be hosting a Public Lecture in collaboration with the Puzzles in the Quantum Gravity Landscape conference.

      Advance tickets are required to attend the live Public Lecture in the Theatre and this event is sold out.

      If you would like to watch the live webcast, please join the waiting line in the Atrium no later than 6:45 pm and you will be taken to the Time Room prior to the start to the talk.

      Alternatively, the talk will be livestreamed via YouTube (https://www.youtube.com/@PIOutreach/featured) for your convenience.

    • 21
      Quantum hair and information loss paradox - VIRTUAL PI/1-100 - Theatre

      PI/1-100 - Theatre

      Perimeter Institute for Theoretical Physics

      190

      In this talk I present our solution to the information paradox published in Phys.Rev.Lett. 128 (2022) 11, 111301 and Phys.Lett.B 827 (2022) 136995 (see EPL 139 (2022) 4, 49001 for a review). Long wavelength quantum gravitational effects allow the interior state of the black hole to influence Hawking radiation, leading to unitary evaporation. I explain why the Mathur theorem is evaded due to the complex nature of the Hawking radiation superposition state.

      The presenter will be joining via Zoom for this talk.

      Speaker: Xavier Calmet
    • 22
      Hearts of Darkness: Nonsingular Black Holes Beyond General Relativity PI/1-100 - Theatre

      PI/1-100 - Theatre

      Perimeter Institute for Theoretical Physics

      190

      Black holes contain, deep in their interior, theoretical evidence of the failure of general relativity. A series of fundamental results, starting from the 1965 Penrose singularity theorem, proved that physically realistic initial conditions will unavoidably produce a singular black hole spacetime. It is generally expected that a full theory of quantum gravity should remove the singularities that appear in general relativity. However, the lack of proper understanding of the dynamical laws dictating the evolution of spacetime and matter in these extreme situations hinders the extraction of predictions in specific models. I will discuss, in a model-independent manner, the different possibilities that singularity regularization may open. I will then focus on fundamental open issues that need to be addressed to obtain viable nonsingular black hole candidates.

      Speaker: Francesco di Filippo
    • 23
      Holographic Thermodynamics: C-ing a Black Hole PI/1-100 - Theatre

      PI/1-100 - Theatre

      Perimeter Institute for Theoretical Physics

      190

      One of the fascinating things about Black Hole Thermodynamics is how we often approach it in a very classical fashion, yet - if real - it is an intrinsically quantum phenomenon. I'll use the illustration of thermodynamics of an accelerating black hole to highlight some of these issues, and I'd like to raise questions on how we derive the First Law, and how unique this derivation is.

      Speaker: Ruth Gregory
    • 10:45 a.m.
      Coffee Break PI/1-124 - Lower Bistro

      PI/1-124 - Lower Bistro

      Perimeter Institute for Theoretical Physics

      120
    • 24
      Open Discussion with today's speakers (Calmet, di Filippo, Gregory) PI/1-100 - Theatre

      PI/1-100 - Theatre

      Perimeter Institute for Theoretical Physics

      190
      Speakers: Xavier Calmet, Francesco di Filippo, Ruth Gregory
    • 12:00 p.m.
      Lunch PI/2-251 - Upper Bistro

      PI/2-251 - Upper Bistro

      Perimeter Institute for Theoretical Physics

      60
    • 25
      Poster Prize Talk PI/1-100 - Theatre

      PI/1-100 - Theatre

      Perimeter Institute for Theoretical Physics

      190
    • 26
      Panel Discussion - Black hole puzzles (Di Filippo, Gregory, Holdom, Myers, Stelle) PI/1-100 - Theatre

      PI/1-100 - Theatre

      Perimeter Institute for Theoretical Physics

      190
      Speakers: Francesco di Filippo, Ruth Gregory, Bob Holdom, Robert Myers, Kelly Stelle
    • 3:00 p.m.
      Coffee Break PI/1-124 - Lower Bistro

      PI/1-124 - Lower Bistro

      Perimeter Institute for Theoretical Physics

      120
    • 27
      Colloquium - Insights from Warped Extra Dimensions - VIRTUAL PI/1-100 - Theatre

      PI/1-100 - Theatre

      Perimeter Institute for Theoretical Physics

      190

      Warped extra dimensions were originally introduced as a way of addressing the hierarchy problem. But insights from these scenarios have extended to black hole physics, cosmology, and even mechanisms for addressing issues in purely four dimensions. We investigate this scenario and some compelling lessons.

      The presenter will be joining via Zoom for this talk.

      Speaker: Lisa Randall
    • 7:00 p.m.
      Fireside Chat & Career Q&A (Mairi Sakellariadou and Renate Loll) PI/3-394 - Skyroom

      PI/3-394 - Skyroom

      Perimeter Institute for Theoretical Physics

      60
    • 28
      Balance Laws as Test of Gravity - VIRTUAL PI/1-100 - Theatre

      PI/1-100 - Theatre

      Perimeter Institute for Theoretical Physics

      190

      I will discuss how one can use balance laws in full non-linear general relativity in order to test waveform models (arXiv:2309.12505)

      The presenter will be joining via Zoom for this talk.

      Speaker: Lavinia Heisenberg
    • 29
      The simplicial Lorentzian path integral and spin foams PI/1-100 - Theatre

      PI/1-100 - Theatre

      Perimeter Institute for Theoretical Physics

      190

      I will discuss two versions of the simplicial Lorentizian path integral, namely the (Lorentzian) quantum Regge and the spin foam version. I will do so in the simple context of de Sitter cosmology. This simple example will reveal the important role of light cone irregular configurations in the simplicial path integral — I will show that these can either lead to an exponentially enhanced or an exponentially suppressed amplitude.
      I will then highlight an important difference between the spin foams and quantum Regge path integral, which affects the probability for the creation of the (de Sitter) universe.

      Speaker: Bianca Dittrich
    • 30
      String Theory and the Cosmological Constant PI/1-100 - Theatre

      PI/1-100 - Theatre

      Perimeter Institute for Theoretical Physics

      190

      An overview is given on moduli stabilization in string theory with emphasis in obtaining de Sitter space solutions. Recent work on vacuum transitions will be emphasised.

      Speaker: Fernando Quevedo
    • 10:45 a.m.
      Coffee Break PI/1-124 - Lower Bistro

      PI/1-124 - Lower Bistro

      Perimeter Institute for Theoretical Physics

      120
    • 31
      A minimal SM/LCDM cosmology PI/1-100 - Theatre

      PI/1-100 - Theatre

      Perimeter Institute for Theoretical Physics

      190

      Recent observations point to a surprisingly economical description of the universe on both very small and very large scales. Stimulated by these findings, Boyle and I have proposed a new, potentially more complete theoretical framework than currently popular paradigms. Our search has so far led to 1) the simplest-yet explanation for the cosmic dark matter, soon to be tested by galaxy surveys, 2) a thermodynamic explanation for the large scale geometry of the cosmos, based on the concept of gravitational entropy à la Hawking, 3) a new account of the big bang singularity as a “mirror” enforcing CPT-symmetric boundary conditions, realising Penrose's "Weyl curvature hypothesis" and 4) a new mechanism for cancelling the divergent vacuum energy and the trace anomalies in the Standard Model (SM). The new mechanism successfully predicts the primordial density perturbations in terms of the SM’s gauge couplings. It also explains why there are 3 generations of elementary particles, each including a RH neutrino, one of which is stable and comprises the dark matter. I’ll outline the challenges the new picture faces and the opportunities it presents, ranging from solving the gauge hierarchy problem to an improved description of quantum gravity along with prospective observational tests.

      Speaker: Neil Turok
    • 32
      Open discussion with today's speakers (Dittrich, Heisenberg, Quevedo, Turok) PI/1-100 - Theatre

      PI/1-100 - Theatre

      Perimeter Institute for Theoretical Physics

      190
      Speakers: Bianca Dittrich, Lavinia Heisenberg, Fernando Quevedo, Neil Turok
    • 12:50 p.m.
      Lunch PI/2-251 - Upper Bistro

      PI/2-251 - Upper Bistro

      Perimeter Institute for Theoretical Physics

      60
    • 33
      Panel Discussion - Future Directions in QG (Dittrich, Gregory, Loll, Sakellariadou, Surya) PI/1-100 - Theatre

      PI/1-100 - Theatre

      Perimeter Institute for Theoretical Physics

      190
      Speakers: Bianca Dittrich, Ruth Gregory, Renate Loll, Mairi Sakellariadou, Sumati Surya
    • 3:00 p.m.
      Break PI/1-100 - Theatre

      PI/1-100 - Theatre

      Perimeter Institute for Theoretical Physics

      190
    • 34
      Branes & Strings, Freedom & Safety and a bit of Cosmology -- Some current problems in Quantum Gravity PI/1-100 - Theatre

      PI/1-100 - Theatre

      Perimeter Institute for Theoretical Physics

      190

      What relations are there between the various ways of wrangling with quantum gravity? String theory is now much more than just a theory of strings -- branes and braneworlds abound. Some kind of effective theory for the familiar world needs to emerge. Are there ways that one could glimpse underlying structure from aspects of an effective theory? That happens for pions -- is there anything like that for gravity? Effective theories also involve higher derivatives, and those can summon up spirits (i.e. ghosts) from the vasty deep. Do asymptotic freedom or asymptotic safety give ways to exorcise them? And what might the effective theory tell us about the earliest times?

      Speaker: Kelly Stelle
    • 35
      Closing Remarks PI/1-100 - Theatre

      PI/1-100 - Theatre

      Perimeter Institute for Theoretical Physics

      190